The string passes over a smooth peg, attached to the end of the shelf. The other end of the string is connected to particle, P, of mass 1 kg, which hangs freely below the shelf as shown in the diagram below.

A box, B, of mass 4 kg lies at rest on a fixed rough horizontal shelf.

B is initially held at rest with the string taut.

In this question, use $g = 10 \,\mathrm{m\,s^{-2}}$

One end of a light string is connected to B.

15

B is then released.

15 (a)

15 (b)

B and P both move with constant acceleration $a \,\mathrm{m}\,\mathrm{s}^{-2}$

As B moves across the shelf it experiences a total resistance force of 5 N

State one type of force that would be included in the total resistance force.

Show that a = 1

[1 mark]

[4 marks]

[1 mark]

15 (c) When B has moved forward exactly 20 cm the string breaks.

Find how much further B travels before coming to rest.

[4 marks]

15 (d) State one assumption you have made when finding your solutions in parts (b) or (c).