14 (a) (i) Given that

write down $\frac{dy}{dx}$

[2 marks]

[1 mark]

14 (a) (ii) Hence find

14 (b)

$$\int 2^x \, \mathrm{d}x$$

The area, A, bounded by the curve with equation $y = 2^x$, the x-axis, the y-axis and the line x = -4 is approximated using eight rectangles of equal width as shown in the

 $y = 2^x$

Show that the exact area of the largest rectangle is $\frac{\sqrt{2}}{4}$ 14 (b) (i)

[2 marks]

[3 marks]

Find the exact value of the total area of the eight rectangles.

14 (b) (ii) The areas of these rectangles form a geometric sequence with common ratio $\frac{\sqrt{2}}{2}$

Give your answer in the form $k(1 + \sqrt{2})$ where k is a rational number.

14 (b) (iii) More accurate approximations for A can be found by increasing the number, n, of rectangles used.

Find the exact value of the limit of the approximations for A as $n \to \infty$

[3 marks]