Q	Marking instructions	AO	Marks	Typical solution
8(a)	Obtains the correct constant term 32	1.1b	B1	$(2+kx)^5 = 32+80kx+80k^2x^2+$
	Obtains $5 \times 16kx$ or $10 \times 8(kx)^2$ OE PI by $\frac{5k}{2}x$ or $\frac{5 \times 4}{2!} \left(\frac{kx}{2}\right)^2$	1.1a	M1	
	Obtains $32 + 80kx + 80k^2x^2(+)$ Accept list of correct terms. No ISW If more terms are given it must be obvious which are their first three terms.	1.1b	A1	
	Subtotal		3	
Q	Marking instructions	AO	Marks	Typical solution
8(b)	Forms the equation their $Ak = 4 \times \text{their } Bk^2$ OE May recover if x is initially included.	3.1a	M1	$80k = 4 \times 80k^{2}$ $k = 0 \text{ or } \frac{1}{4}$
	Deduces $k=\frac{1}{4}$ only Or their $k=$ their $\frac{A}{4B}$ Justification of rejection $k=$ 0 not required.	2.2a	A1F	$k = \frac{1}{4}$ Since $k > 0$
	Subtotal		2	
	Question 8 Total		5	