Q	Marking instructions	AO	Marks	Typical solution
13(a)	Substitutes $x = -\frac{1}{2}$ into $P(x)$ and obtains zero. Must see $-\frac{1}{2}$ bracketed correctly. If bracket(s) missing must see a further step to indicate correct evaluation eg $-\frac{4}{8} + \frac{8}{4} - \frac{11}{2} + 4 = 0$ or better.	1.1a	M1	$P\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^3 + 8\left(-\frac{1}{2}\right)^2 + 11\left(-\frac{1}{2}\right) + 4$ $= 0$ $\therefore (2x+1) \text{ is a factor of } P(x)$
	Completes factor theorem argument by showing $P\left(-\frac{1}{2}\right) = 0 \text{ and stating}$ $\therefore (2x+1) \text{ is a factor of } P(x)$ OE	2.1	R1	
	Subtotal		2	
Q	Marking instructions	AO	Marks	Typical solution
13(b)	Obtains two correct coefficients of $2x^2 + 3x + 4$	1.1a	M1	$P(x) = (2x+1)(2x^2+3x+4)$
	Obtains $(2x+1)(2x^2+3x+4)$	1.1b	A1	
	Subtotal		2	

Q	Marking instructions	AO	Marks	Typical solution
13(c)	Begins argument by explaining that either $(2n+1) \neq 1$ Or $(an^2 + bn + c) \neq 1$ Or $(2n+1) \neq$ the cubic expression Or $(an^2 + bn + c) \neq$ the cubic expression Condone x instead of n	2.1	M1	
	States that Either both $(2n+1) \neq 1$ and their $(an^2 + bn + c) \neq 1$ Or both $(2n+1)$ is not equal to $4n^3 + 8n^2 + 11n + 4$ and their $(an^2 + bn + c)$ is not equal to $4n^3 + 8n^2 + 11n + 4$ Or $(2n+1) \neq 1$ and $(2n+1)$ is not equal to $4n^3 + 8n^2 + 11n + 4$ Or their $(an^2 + bn + c) \neq 1$ and their $(an^2 + bn + c)$ is not equal to $4n^3 + 8n^2 + 11n + 4$	2.2a	R1F	$4n^3 + 8n^2 + 11n + 4 = (2n+1)(2n^2 + 3n + 4)$ There are two factors. Both factors are integers not equal to 1 so $4n^3 + 8n^2 + 11n + 4$ is never prime.
	Subtotal		2	
	Question 13 Total		6	