Q	Marking instructions	AO	Marks	Typical solution
18(a)	Selects the substitution $u = 2x + 1$ and differentiates or uses it to replace $2x + 1$ in the integrand.	3.1a	В1	
	Differentiates their substitution and uses the result to replace $\mathrm{d}x$ in the integral.	1.1a	M1	Let $u = 2x + 1$
	Makes a complete substitution to write the integrand in terms of u leading to an integrand of the form $A(2u-k)u^{\frac{1}{2}}$ Or FT their substitution $u=(2x+1)^{\frac{1}{2}}$ or $u^2=2x+1$ leading to an integrand of the form $A(2u^2-1)u^2$	3.1a	M1	$\frac{du}{dx} = 2 \Rightarrow dx = \frac{1}{2}du$ $4x + 1 = 2u - 1$ $\int_{0}^{4} (4x + 1)(2x + 1)^{\frac{1}{2}} dx$ $= \int_{1}^{9} (2u - 1)(u)^{\frac{1}{2}} \frac{1}{2} du$ $= \frac{1}{2} \int_{1}^{9} \left(2u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$
	Obtains correct lower limit for their substitution	1.1a	M1	
	Completes a reasoned argument to show the required result with $a=1$	2.1	R1	
	Subtotal		5	

Q	Marking instructions	AO	Marks	Typical solution		
18(b)	Integrates to obtain $ \frac{1}{2} \frac{4u^{\frac{5}{2}}}{5} \text{ or } \frac{4u^{\frac{5}{2}}}{5} \text{ or } -\frac{1}{2} \frac{2u^{\frac{3}{2}}}{3} \text{ or } \frac{2u^{\frac{3}{2}}}{3} $	1.1a	M1	$\int_{0}^{4} (4x+1)(2x+1)^{\frac{1}{2}} dx$ $= \frac{1}{2} \int_{1}^{9} \left(2u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du$ $= \frac{1}{2} \left[\frac{4u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3} \right]^{9}$		
	Obtains $\frac{1}{2} \left(\frac{4u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3} \right)$ or $\frac{4u^{\frac{5}{2}}}{5} - \frac{2u^{\frac{3}{2}}}{3}$	1.1b	A1	$\begin{vmatrix} 2 & 5 & 3 \\ = \frac{1}{2} \left[\left(\frac{4 \times 9^{\frac{5}{2}}}{5} - \frac{2 \times 9^{\frac{3}{2}}}{3} \right) - \left(\frac{4 \times 1^{\frac{5}{2}}}{5} - \frac{2 \times 1^{\frac{3}{2}}}{3} \right) \right]$ $= \frac{1322}{15}$		
	Substitutes limits explicitly into their integrated expression of the form $Au^{\frac{5}{2}} - Bu^{\frac{3}{2}}$ Where A and B are both positive FT their non-zero a Condone omission of powers on substitution of 1	1.1a	M1			
	Completes argument to show the given result with no unrecovered slips.	2.1	R1			
	Subtotal		4			
Q	Marking instructions	AO	Marks	Typical solution		
18(c)	Explains that increasing the number of rectangles will lead to an increased value so the (improved) approximation will be greater than $\cal A$	2.4	E1	Since the area of the rectangles is an underestimate, increasing their number will give an increased total $> A$		
	Gives a reason why the approximation will be an underestimate so will be less than 1322 15	2.4	E1	No matter how many rectangles are used their total will be less than the exact area so $< \frac{1322}{15}$		
Subtotal 2						
	Question 18 Total		11			