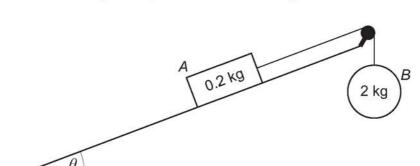
The plane is inclined at an angle θ to the horizontal, such that $\tan \theta = \frac{7}{24}$


Block A, of mass 0.2 kg, lies at rest on a rough plane.

18

The other end of this string is attached to particle B, of mass $2 \, \text{kg}$, which is held at rest so that the string is taut, as shown in the diagram below.

A light inextensible string is attached to A and runs parallel to the line of greatest

slope until it passes over a smooth fixed pulley at the top of the slope.

18 (a) B is released from rest so that it begins to move vertically downwards with an acceleration of
$$\frac{543}{625}$$
 g m s⁻²

Show that the coefficient of friction between A and the surface of the inclined plane is 0.17

[8 marks]

In this question use $g=9.81\,\mathrm{m\,s^{-2}}$

18 (b) In this question use $g = 9.81 \,\mathrm{m \, s^{-2}}$

When A reaches a speed of $0.5\,\mathrm{m\,s^{-1}}$ the string breaks.

18 (b) (i) Find the distance travelled by A after the string breaks until first coming to rest.

[4 marks]

18 (b) (ii) State an assumption that could affect the validity of your answer to part (b)(i).

[1 mark]