north respectively. A particle, T, is moving on a plane at a constant speed. The path followed by T makes the exact shape of a triangle ABC. T moves around ABC in an anticlockwise direction as shown in the diagram below.

In this question i and i are perpendicular unit vectors representing due east and due

Find the speed of T as it moves from A to B

On its journey from A to B the velocity vector of T is $(3\mathbf{i} + \sqrt{3}\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$

[1 mark]

[3 marks]

18

18 (a)

On its journey from B to C the velocity vector of T is $(-3i + \sqrt{3}j)$ m s⁻¹ 18 (b)

18 (c) It is given that ABC is an equilateral triangle.

Find the position vector of C

T returns to its initial position after 9 seconds.

Vertex B lies at position vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ metres with respect to a fixed origin O

Show that the acute angle $ABC = 60^{\circ}$ [2 marks]