19	A wooden toy comprises a train engine and a trailer connected to each other by a light, inextensible rod.
	The train engine has a mass of 1.5 kilograms. The trailer has a mass 0.7 kilograms.
	A string inclined at an angle of 40° above the horizontal is attached to the front of the train engine.
	The tension in the string is 2 newtons.
	As a result the toy moves forward, from rest, in a straight line along a horizontal surface with acceleration $0.06\mathrm{ms^{-2}}$ as shown in the diagram below.
	$\stackrel{0.06\mathrm{ms}^{-2}}{\longrightarrow}$
	2N v
	40°
	As it moves the train engine experiences a total resistance force of 0.8 N
19 (a)	Show that the total resistance force experienced by the trailer is approximately 0.6 N [4 marks]
19 (b)	At the instant that the toy reaches a speed of $0.5\mathrm{ms^{-1}}$ the string breaks.
	As a result of this the train engine and trailer decelerate at a constant rate until they come to rest, having travelled a distance of h metres.
	It can be assumed that the resistance forces remain unchanged.
19 (b) (i)	Find the tension in the rod after the string has broken. [4 marks]
19 (b) (ii)	Find h [3 marks]
19 (c)	State one modelling assumption that you have used about the rod when answering part (b)(i). [1 mark]