$V = a \times h^N$ where N is the number of years since 2009 and a and b are constants.

Victoria models the incomplete data, shown in the table, using the formula

grocery sales in the UK has grown exponentially since 2009.

Victoria, a market researcher, believes the average weekly value, £ V million, of online

| Year                                         | 2009 | 2010 | 2011 | 2012 | 2013 | 2014  | 2015 | 2016  |
|----------------------------------------------|------|------|------|------|------|-------|------|-------|
| Average Weekly Sales $\mathfrak{L}V$ million | 56.4 |      | 74.5 | 86.9 | 97.7 | 109.3 |      | 141.9 |
|                                              |      |      |      |      |      |       |      |       |

Victoria wishes to determine the values of a and b in her formula. 6 (a)

6

6 (a) (i)

6 (b)

To do this she plots a graph of  $\log_{10} V$  against N and then draws a line of best fit as shown in the diagram below.  $\log_{10} V$ 2.2 2.1



The equation of Victoria's line of best fit is  $\log_{10} V = 0.057 N + 1.76$ 

Use the equation of Victoria's line of best fit to show that, correct to three significant figures, a = 57.5

[1 mark]

[1 mark]

[1 mark]

- 6 (a) (ii) Use the equation of Victoria's line of best fit to find the value of  $\boldsymbol{b}$ Give your answer to three significant figures.
  - According to Victoria's model, state the yearly percentage increase in the
- average weekly value of online grocery sales. [1 mark] 6 (c) (i) Use Victoria's model to predict the average weekly value of online grocery sales

6 (c) (ii) Explain why the prediction made in part (c)(i) may be unreliable.

in 2025. [2 marks]