Q	Marking instructions	AO	Marks	Typical solution
6	Expands brackets, at least one completely correct	1.1a	M1	$4\sin^2\theta + 12\sin\theta\cos\theta + 9\cos^2\theta$
	Expands both brackets correctly	1.1b	A1	$+36\sin^2\theta - 12\sin\theta\cos\theta + \cos^2\theta = 30$
	Uses $\sin^2 \theta + \cos^2 \theta = 1$	3.1a	M1	$40\sin^2\theta + 10\cos^2\theta = 30$
	correctly to eliminate $\cos^2\theta$ or			$40\sin^2\theta + 10(1-\sin^2\theta) = 30$
	$\sin^2 \theta$ from their equation			5 (2)
	PI by $30\sin^2\theta + 10 = 30$			$30\sin^2\theta + 10 = 30$
	Obtains an equation of the form	1.1a	M1	$\sin^2 \theta = \frac{2}{3}$ $\sin \theta = \pm \frac{\sqrt{6}}{3}$
	$\sin^2 \theta = k \text{ or } \cos^2 \theta = k$			3_
	where $0 \le k \le 1$			$\int \sin \theta - \pm \frac{\sqrt{6}}{2}$
	PI by $\sin \theta = \sqrt{k}$ or			
	$\sin\theta = -\sqrt{k}$			since θ is obtuse $\sin \theta = \frac{\sqrt{6}}{3}$
	Obtains $\sin \theta = \pm \sqrt{\frac{2}{3}}$	1.1b	A1	$\frac{1}{3}$
	Completes reasoned argument	2.4	R1F	
	to obtain $\sin \theta = \sqrt{\frac{2}{3}}$ and			
	explains why $\sin \theta = \sqrt{\frac{2}{3}}$			
	Must come from $\sin \theta = \pm \sqrt{\frac{2}{3}}$			
	FT their $\sin^2 \theta = k$			
	where $0 \le k \le 1$			
	Question 6 Total	0.	6	