9 (a) (i)	Find the binomial expansion of $(1 + 3x)^{-1}$ up to and including the term in x^2	[2 marks]
9 (a) (ii)	Show that the first three terms in the binomial expansion of	
	$\frac{1}{2-3x}$	
	form a geometric sequence and state the common ratio.	[5 marks]
9 (b)	It is given that $\frac{36x}{(1+3x)(2-3x)} = \frac{P}{(2-3x)} + \frac{Q}{(1+3x)}$	
	where P and Q are integers.	
	Find the value of ${\it P}$ and the value of ${\it Q}$	[3 marks]
9 (c) (i)	Using your answers to parts (a) and (b), find the binomial expansion of	[o marko]
	$\frac{12x}{(1+3x)(2-3x)}$	
	up to and including the term in x^2	[2 marks]
9 (c) (ii)	Find the range of values of x for which the binomial expansion of $12x$	
	$\frac{12x}{(1+3x)(2-3x)}$ is valid.	[1 mark]