Q	Marking instructions	AO	Marks	Typical solution
11	Equates $(x^2 - 8x) \ln x$ to zero PI by 1 or 8 or $\pm 108.(2)$ May be seen on diagram or integral	3.1a	M1	$(x^{2} - 8x) \ln x = 0$ $x(x-8) \ln x = 0$ $x = 8, \ln x = 0 \Rightarrow x = 1$ $\int_{1}^{8} (x^{2} - 8x) \ln x dx$
	Obtains at least one of $x = 1$ or $x = 8$ PI by $\pm 108.(2)$ May be seen on diagram or integral	1.1b	A1	$ \begin{aligned} y' &= \ln x & u' &= \frac{1}{x} \\ v' &= x^2 - 8x & v &= \frac{x^3}{3} - 4x^2 \end{aligned} $
	Deduces the limits are 1 and 8 PI by ±108.(2) May be seen on integral or substituted into their integrated expression	2.2a	R1	$\left \left(\frac{x^3}{3} - 4x^2 \right) \ln x - \int \left(\frac{x^3}{3} - 4x^2 \right) \frac{1}{x} dx \right $ $= \left(\frac{x^3}{3} - 4x^2 \right) \ln x - \left(\frac{x^3}{9} - 2x^2 \right)$
	States $u = \ln x$ and $v' = x^2 - 8x$ Condone $v = \ln x$ and $u' = x^2 - 8x$	3.1a	M1	$\int_{1}^{8} \left(x^2 - 8x\right) \ln x dx$
	Finds $u' = \frac{1}{x}$ and $v = \frac{x^3}{3} - 4x^2$	3.1a	A1	$ = \left[\left(\frac{8^3}{3} - 4 \times 8^2 \right) \ln 8 - \left(\frac{8^3}{9} - 2 \times 8^2 \right) \right] $
	Applies integration by parts formula correctly by substituting their u , u ' and v	1.1a	M1	$-\left[\left(\frac{1^3}{3} - 4 \times 1^2\right) \ln 1 - \left(\frac{1^3}{9} - 2 \times 1^2\right)\right]$
	PI by $ \left(\frac{x^3}{3} - 4x^2\right) \ln x - \left(\frac{x^3}{9} - 2x^2\right) \text{ or } $ $ -\left(\frac{x^3}{3} + 4x^2\right) \ln x + \left(\frac{x^3}{9} - 2x^2\right) $ Condone missing brackets			$= -\frac{256}{3} \ln 8 + \frac{640}{9} - \frac{17}{9}$ $= \frac{623}{9} - 256 \ln 2$
	Obtains $ \left(\frac{x^3}{3} - 4x^2\right) \ln x - \left(\frac{x^3}{9} - 2x^2\right) \text{ OE} $ or $ \left(x^3 - x^3\right) + \left(x^3 - x^3\right) \text{ OF} $	1.1b	A1	$\therefore \text{ Area} = -\frac{623}{9} + 256 \ln 2$
	$-\left(\frac{x^3}{3} + 4x^2\right) \ln x + \left(\frac{x^3}{9} - 2x^2\right) \mathbf{OE}$			

Substitutes their non-zero limits correctly into their integrated expression (the subtraction does not need to be seen) or obtains exact values for their integrated expression using their non-zero limits $eg - \frac{256}{3} \ln 8 + \frac{640}{9} \text{ and } \frac{17}{9}$	1.1a	M1	
Obtains $\frac{623}{9}$ - 256 ln 2 or $\frac{623}{9} - \frac{256}{3} \ln 8$ ACF must be exact form with two terms $PI - \frac{623}{9} + 256 \ln 2$	1.1b	A1	
Completes a reasoned argument to obtain $-\frac{623}{9} + 256 \ln 2$ To be awarded R1, all marks must be scored	2.1	R1	
 Question 11 Total		10	