(b)	$p=-("(2+i) "+$ "(2-i)" + "3") $\Rightarrow p=\ldots$	M1	3.1a
	$\Rightarrow p=-7$ cso	A1	1.1b
		(2)	
	1(b) alternative		
	$f(z)=(z-3)\left(z^{2}-4 z+5\right) \Rightarrow p=\ldots$	M1	3.1a
	$\Rightarrow \mathrm{p}=-7$ cso	A1	1.1b
		(2)	

Notes:

(a)

M 1: Multiplies the three given roots together and sets the result equal to 15 or -15
A1: Obtains a correct equation in α
M 1: Forms a quadratic equation in α and attempts to solve this equation by either completing the square or using the quadratic formula to give $\alpha=$....
A1: $\quad \alpha=2 \pm \mathrm{i}$
A1: Deduces the roots are $2+\mathrm{i}, 2-\mathrm{i}$ and 3
(b)

M 1: Applies the process of finding $-\sum$ (of their three roots found in part (a)) to give $p=\ldots$
A1: $\quad \mathrm{p}=-7$ by correct solution only

(b) Alternative

M 1: Applies the process expanding $(z-" 3 ")(z-($ their sum $) z+$ their product $)$ in order to find $p=\ldots$
A1: $\quad \mathrm{p}=-7$ by correct solution only

