2(a)	$\mathbf{r} \bullet\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{r}5 \\ -3 \\ -4\end{array}\right) \cdot\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)$	M1	1.1b
	$3 x-y+2 z=10$	A1	2.5
		(2)	
(b)	$\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ -5 \\ 3\end{array}\right)=8$	B1	1.1b
	$\sqrt{(3)^{2}+(-1)^{2}+(2)^{2}} \cdot \sqrt{(-1)^{2}+(-5)^{2}+(3)^{2}} \cos \alpha="-3+5+6 "$	M1	1.1b
	$\theta=90^{\circ}-\arccos \left(\frac{8}{\sqrt{14} \cdot \sqrt{35}}\right)$ or $\sin \theta=\frac{8}{\sqrt{14} \cdot \sqrt{35}}$	M1	2.1
	$\theta=21.2^{\circ}(1 \mathrm{dp})^{*}$ cso	A1*	1.1b
		(4)	
(c)	$3(7-\lambda)-(3-5 \lambda)+2(-2+3 \lambda)=10 \Rightarrow \lambda=\ldots$	M1	3.1a
	$\lambda=-\frac{1}{2}$	A1	1.1b
	$\overrightarrow{O X}=\left(\begin{array}{r}7 \\ 3 \\ -2\end{array}\right)-\frac{1}{2}\left(\begin{array}{r}-1 \\ -5 \\ 3\end{array}\right)=\left(\begin{array}{l}\ldots \\ \ldots \\ \cdots\end{array}\right)$	M1	1.1b
	$X(7.5,5.5,-3.5)$	A1ft	1.1b
		(4)	

(10 marks)

Notes:

(a)

M 1: Attempts to apply the formula $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \mathbf{.} \mathbf{n}$
A1: Correct Cartesian notation. e.g. $3 x-y+2 z=10$ or $-3 x+y-2 z=-10$

Note: Do not allow final answer given as $\mathbf{r} \cdot(3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=10$, o.e.
(b)

B1: $\quad \overrightarrow{\mathrm{OA}} \cdot \mathbf{n}=8$
M1: An attempt to apply the correct dot product formula between \mathbf{n} and \mathbf{d}
M 1: Depends on previous M mark. Applies the dot product formula to find the angle between Π and |
A1*: 21.2° cso

Question 2 notes continued:

(c)

M 1: Substitutes I into Π and solves the resulting equation to give $\lambda=$
A1: $\quad \lambda=-\frac{1}{2}$ o.e.
M 1: Depends on previous M mark. Substitutes their λ into \| and finds at least one of the coordinates
A1ft: (7.5, 5.5, -3.5) but follow through on their value of λ

