$3 x=$ value of savings account, $y=$ value of property bond account,
$z=$ value of share dealing account

$$
\begin{gathered}
x+y+z=5000 \\
x+400=y
\end{gathered}
$$

A1 1.1b

Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025\end{array}\right)$ or $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1.015 & 1.035 & 0.975\end{array}\right)$		
e.g. $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}5000 \\ -400 \\ 79\end{array}\right)$	M1 A1	3.1a 1.1b
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025\end{array}\right)^{-1}\left(\begin{array}{r}5000 \\ -400 \\ 79\end{array}\right)=\left(\begin{array}{l}\ldots \\ \cdots \\ \cdots\end{array}\right)$	M1	1.1b
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1800 \\ 2200 \\ 1000\end{array}\right)$	A1	1.1b
Tyler invested $£ 1800$ in the savings account, $£ 2200$ in the property bond account and $£ 1000$ in the share dealing account	A1ft	3.2a

(7 marks)

Notes:

M 1: Attempts to set up 3 equations with 3 unknowns
A1: At least 2 equations are correct with the appropriate variables defined
M 1: Sets up a matrix equation of the form, e.g. $\left(\begin{array}{lll}\ldots . . & \ldots & . . . \\ \ldots & . . . & . . \\ \ldots . . & . . & . .\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}\ldots \\ \ldots \\ \ldots .\end{array}\right)$, where "..." are numerical values
A 1: Correct matrix equation (or equivalent)

M 1: Depends on previous M mark. Applies (their $\mathbf{A})^{-1}$ their " -400 " and obtains at least one their "79"
value of x, y or z
A1: Correct answer
A 1ft: Correct follow through answer in context

