$\{\mathrm{w}=\mathrm{x}-1 \Rightarrow\} \mathrm{x}=\mathrm{w}+1$	B1	3.1a
$(w+1)^{3}+3(w+1)^{2}-8(w+1)+6=0$	M1	3.1a
$w^{3}+3 w^{2}+3 w+1+3\left(w^{2}+2 w+1\right)-8 w-8+6=0$		
	M1	1.1b
$w^{3}+6 w^{2}+w+2=0$	A1	1.1b
	A1	1.1b
	(5)	
Alternative		
$\alpha+\beta+\gamma=-3, \alpha \beta+\beta \gamma+\alpha \gamma=-8, \alpha \beta \gamma=-6$	B1	3.1a
sumroots $=\alpha-1+\beta-1+\gamma-1$		
$=\alpha+\beta+\gamma-3=-3-3=-6$		
pairsum $=(\alpha-1)(\beta-1)+(\alpha-1)(\gamma-1)+(\beta-1)(\gamma-1)$		
$=\alpha \beta+\alpha \gamma+\beta \gamma-2(\alpha+\beta+\gamma)+3$		3.1
$=-8-2(-3)+3=1$	1	3.1a
product $=(\alpha-1)(\beta-1)(\gamma-1)$		
$=\alpha \beta \gamma-(\alpha \beta+\alpha \gamma+\beta \gamma)+(\alpha+\beta+\gamma)-1$		
$=-6-(-8)-3-1=-2$		
	M1	1.1b
$w^{3}+6 w^{2}+w+2=0$	A1	1.1b
	A1	1.1b
	(5)	

(5 marks)

Notes:

B 1: \quad Selects the method of making a connection between x and w by writing $x=w+1$
M 1: Applies the process of substituting their $x=W+1$ into $x^{3}+3 x^{2}-8 x+6=0$
M 1: Depends on previous M mark. Manipulating their equation into the form $w^{3}+p w^{2}+q w+r=0$
A1: At least two of p, q, r are correct
A1: Correct final equation

Alternative

B1: \quad Selects the method of giving three correct equations each containing α, β and γ
M 1: Applies the process of finding sum roots, pair sum and product
M1: Depends on previous M mark. Applies
$w^{3}-($ their sum roots $) w^{2}+($ their pair sum $) w-$ their $\alpha \beta \gamma=0$
A1: At least two of p, q, r are correct
A1: Correct final equation

