Question	Scheme	Marks	AOs
6(a)	$n=1$, $\sum_{r=1}^{1} r^2 = 1$ and $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6}(1)(2)(3) = 1$	B1	2.2a
	Assume general statement is true for $n = k$		
	So assume $\sum_{r=1}^{k} r^2 = \frac{1}{6}k(k+1)(2k+1)$ is true	M1	2.4
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1	2.1
	$=\frac{1}{6}(k+1)(2k^2+7k+6)$	A1	1.1b
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$	A1	1.1b
	Then the general result is true for $n = k + 1$		
	As the general result has been shown to be true for $n = 1$, then the	A1	2.4
	general result is true for all $n \in \mathbb{Z}^+$		
		(6)	
(b)	$\sum_{r=1}^{n} r(r+6)(r-6) = \sum_{r=1}^{n} (r^3 - 36r)$		
	$-\frac{1}{n^2(n+1)^2}-\frac{36}{n(n+1)}$	M1	2.1
	$\frac{4}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	A1	1.1b
	$=\frac{1}{4}n(n+1)\left[n(n+1)-72\right]$	M1	1.1b
	$=\frac{1}{4}n(n+1)(n-8)(n+9)$ * cso	A1*	1.1b
		(4)	
(c)	$\frac{1}{4}n(n+1)(n-8)(n+9) = \frac{17}{6}n(n+1)(2n+1)$	M1	1.1b
	$\frac{1}{4}(n-8)(n+9) = \frac{17}{6}(2n+1)$	M1	1.1b
	$3n^2 - 65n - 250 = 0$	A1	1.1b
	(3n+10)(n-25) = 0	M1	1.1b
	(As <i>n</i> must be a positive integer,) $n = 25$	A1	2.3
		(5)	
		(15 n	narks)

Question 6 notes:

(a)

- **B1:** Checks n=1 works for both sides of the general statement
- **M1:** Assumes (general result) true for n = k
- M1: Attempts to add $(k + 1)^{\text{th}}$ term to the sum of k terms
- A1: Correct algebraic work leading to either $\frac{1}{6}(k+1)(2k^2+7k+6)$

or
$$\frac{1}{6}(k+2)(2k^2+5k+3)$$
 or $\frac{1}{6}(2k+3)(k^2+3k+2)$

- A1: Correct algebraic work leading to $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$
- A1: cso leading to a correct induction statement conveying all three underlined points

(b)

- M1: Substitutes at least one of the standard formulae into their expanded expression
- A1: Correct expression
- M1: Depends on previous M mark. Attempt to factorise at least n(n+1) having used

A1*: Obtains
$$\frac{1}{4}n(n+1)(n-8)(n+9)$$
 by cso

(c)

- M1: Sets their part (a) answer equal to $\frac{17}{6}n(n+1)(2n+1)$
- M1: Cancels out n(n+1) from both sides of their equation

A1:
$$3n^2 - 65n - 250 = 0$$

M1: A valid method for solving a 3 term quadratic equation

A1: Only one solution of n = 25