$n=1, \sum_{r=1}^{1} r^{2}=1$ and $\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{6}(1)(2)(3)=1$
Assume general statement is true for $\mathrm{n}=\mathrm{k}$
So assume $\sum_{r=1}^{k} r^{2}=\frac{1}{6} k(k+1)(2 k+1)$ is true
$\sum_{r=1}^{k+1} r^{2}=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2}$
$=\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)$
$=\frac{1}{6}(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3)=\frac{1}{6}(\mathrm{k}+1)(\{\mathrm{k}+1\}+1)(2\{\mathrm{k}+1\}+1)$
Then the general result is true for $\mathrm{n}=\mathrm{k}+1$
As the general result has been shown to be true for $n=1$, then the general result is true for all $n \in \mathbb{Z}^{+}$
(b)
(c)

$$
\sum_{r=1}^{n} r(r+6)(r-6)=\sum_{r=1}^{n}\left(r^{3}-36 r\right)
$$

general result is true for all $n \in \mathbb{Z}^{+}$

$$
=\frac{1}{4} n^{2}(n+1)^{2}-\frac{36}{2} n(n+1)
$$

$$
=\frac{1}{4} n(n+1)[n(n+1)-72]
$$

$$
=\frac{1}{4} n(n+1)(n-8)(n+9) * \text { cso }
$$

Question 6 notes:

(a)

B1: Checks $\mathrm{n}=1$ works for both sides of the general statement
M 1: Assumes (general result) true for $n=k$
M 1: Attempts to add $(k+1)^{\text {th }}$ term to the sum of k terms
A1: Correct algebraic work leading to either $\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)$
or $\quad \frac{1}{6}(k+2)\left(2 k^{2}+5 k+3\right)$ or $\frac{1}{6}(2 k+3)\left(k^{2}+3 k+2\right)$
A1: Correct algebraic work leading to $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$
A1: cso leading to a correct induction statement conveying all three underlined points
(b)

M 1: Substitutes at least one of the standard formulae into their expanded expression
A1: Correct expression
M 1: Depends on previous M mark. Attempt to factorise at least $n(n+1)$ having used
A1*: Obtains $\frac{1}{4} n(n+1)(n-8)(n+9)$ by cso
(c)

M 1: Sets their part (a) answer equal to $\frac{17}{6} n(n+1)(2 n+1)$
M 1: Cancels out $n(n+1)$ from both sides of their equation
A1: $\quad 3 n^{2}-65 n-250=0$
M 1: A valid method for solving a 3 term quadratic equation
A 1: Only one solution of $n=25$

