9(a)

$\overrightarrow{A B}=\left(\begin{array}{c}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
$\{\overrightarrow{O F}=\mathbf{r}=\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)+\lambda\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
$\begin{aligned} & \{\overrightarrow{O F} \cdot \overrightarrow{A B}=0 \Rightarrow\}\left(\begin{array}{c} -3+12 \lambda \\ 1+3 \lambda \\ -7+18 \lambda \end{array}\right) \cdot\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)=0 \\ & \Rightarrow-36+144 \lambda+3+9 \lambda-126+324 \lambda=0 \Rightarrow 477 \lambda-159=0 \end{aligned}$	dM1	1.1b
$\Rightarrow \lambda=\frac{1}{3}$	A1	1.1b
$\begin{aligned} & \{\overrightarrow{O F}=\}\left(\begin{array}{r} -3 \\ 1 \\ -7 \end{array}\right)+\frac{1}{3}\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)=\left(\begin{array}{r} 1 \\ 2 \\ -1 \end{array}\right) \\ & \text { and minimum distance }=\sqrt{(1)^{2}+(2)^{2}+(-1)^{2}} \end{aligned}$	dM1	3.1a
$=\sqrt{6}$ or 2.449...	A1	1.1b
>2, so the octopus is not able to catch the fish F	A1ft	3.2a
	(7)	

9(a) Alternative 1

$\overrightarrow{A B}=\left(\begin{array}{r}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
$\left\{\overrightarrow{O A}=\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\right.$ and $\left.\overrightarrow{A B}=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right) \Rightarrow\right\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right) \cdot\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
$\cos \theta\left\{=\frac{\overrightarrow{O A} \bullet \overrightarrow{A B}}{\|\overrightarrow{O A}\| \cdot\|\overrightarrow{A B}\|}\right\}=\frac{ \pm\left(\left(\begin{array}{r} -3 \\ 1 \\ -7 \end{array}\right) \cdot\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)\right)}{\sqrt{(-3)^{2}+(1)^{2}+(-7)^{2}} \cdot \sqrt{(12)^{2}+(3)^{2}+(18)^{2}}}$	dM1	1.1b
$\left\{\cos \theta=\frac{-36+3-126}{\sqrt{59} \cdot \sqrt{477}}=\frac{-159}{\sqrt{59} \cdot \sqrt{477}}\right\}$		
$\theta=161.4038029 \ldots$ or 18.59619709 ... or $\sin \theta=0.3188964021 \ldots$	A1	1.1b
minimum distance $=\sqrt{(-3)^{2}+(1)^{2}+(-7)^{2}} \sin (18.59619709 \ldots)$	dM1	3.1a
$=\sqrt{6}$ or 2.449...	A1	1.1b
>2, so the octopus is not able to catch the fish F	A1ft	3.2a
	(7)	
9(a) Alternative 2		
$\overrightarrow{A B}=\left(\begin{array}{r}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
$\{\overrightarrow{O F}=\mathbf{r}=\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)+\lambda\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
$\|\overrightarrow{O F}\|^{2}=(-3+12 \lambda)^{2}+(1+3 \lambda)^{2}+(-7+18 \lambda)^{2}$	dM1	1.1b
$=9-72 \lambda+144 \lambda^{2}+1+6 \lambda+9 \lambda^{2}+49-252 \lambda+324 \lambda^{2}$		
$=477 \lambda^{2}-318 \lambda+59$	A1	1.1b
$=53(3 \lambda-1)^{2}+6$	dM1	3.1a
minimum distance $=\sqrt{6}$ or 2.449 \ldots	A1	1.1b
>2, so the octopus is not able to catch the fish F	A1ft	3.2a
	(7)	

9(b)	e.g. Fish F may not swim in an exact straight line from A to B Fish F may hit an obstacle whilst swimming from A to B Fish F may deviate his path to avoid being caught by the octopus	B1	3.5b
		(1)	
(c)	e.g. Octopus is effectively modelled as a particle - so we may need to look at where the octopus's mass is distributed Octopus may during the fish F's motion move away from its fixed location at 0	B1	3.5b
		(1)	

(9 marks)

Question 9 notes:

(a)

M 1: Attempts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector \mathbf{d}
M1: Applies $\overrightarrow{O A}+\lambda$ (their $\overrightarrow{A B}$ or their $\overrightarrow{B A}$ or their \mathbf{d}) or equivalent
M1: Depends on previous M mark. Writes down
(their $\overline{\mathrm{OF}}$ which is in terms of λ) $\cdot($ their $\overrightarrow{\mathrm{AB}})=0$. Can be implied
A 1: Lambda is correct. e.g. $\lambda=\frac{1}{3}$ for $\overrightarrow{A B}=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$ or $\lambda=1$ for $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$
M 1: Depends on previous M mark. Complete method for finding $|\overrightarrow{O F}|$
A1: $\sqrt{6}$ or awrt 2.4
Alft: Correct follow through conclusion, which is in context with the question

Alternative 1

(a)

M 1: Attempts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector \mathbf{d}
M1: Realisation that the dot product is required between $\overrightarrow{O A}$ and their $\overrightarrow{A B}$. (o.e.)
M 1: Depends on previous M mark. Applies dot product formula between $\overrightarrow{O A}$ and their $\overrightarrow{A B}$ (o.e.)

A 1: $\quad \theta=$ awrt 161.4 or awrt 18.6 or $\sin \theta=$ awrt 0.319
M 1: Depends on previous M mark. (their OA) $\sin ($ their θ)
A1: $\sqrt{6}$ or awrt 2.4
A lft: Correct follow through conclusion, which is in context with the question

Question 9 notes continued:

Alternative 2

(a)

M 1: Attempts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector \mathbf{d}
M1: Applies $\overrightarrow{O A}+\lambda$ (their $\overrightarrow{A B}$ or their $\overrightarrow{B A}$ or their \mathbf{d}) or equivalent
M 1: Depends on previous M mark. Applies Pythagoras by finding $|\overrightarrow{O F}|^{2}$, o.e.
A 1: $\quad|\overrightarrow{O F}|^{2}=477 \lambda^{2}-318 \lambda+59$
M 1: Depends on previous M mark. Method of completing the square or differentiating their $|\overrightarrow{O F}|^{2}$ w.r.t. λ
A1: $\sqrt{6}$ or awrt 2.4
Alft: Correct follow through conclusion, which is in context with the question
(b)

B1: An acceptable criticism for fish F , which is in context with the question
(c)

B1: An acceptable criticism for the octopus, which is in context with the question

