Question	Scheme	Marks	AOs
9(a)	$\overrightarrow{AB} = \begin{pmatrix} 9 \\ 4 \\ 11 \end{pmatrix} - \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right\} \text{or} \mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$	M1	3.1a
	$\left\{ \overrightarrow{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$	M1	1.1b
	$\left\{ \overrightarrow{OF} \bullet \overrightarrow{AB} = 0 \Rightarrow \right\} \begin{pmatrix} -3 + 12\lambda \\ 1 + 3\lambda \\ -7 + 18\lambda \end{pmatrix} \bullet \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} = 0$	dM1	1.1b
	$\Rightarrow -36 + 144\lambda + 3 + 9\lambda - 126 + 324\lambda = 0 \Rightarrow 477\lambda - 159 = 0$		
	$\Rightarrow \lambda = \frac{1}{3}$	A1	1.1b
	$\left\{ \overrightarrow{OF} = \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 12\\3\\18 \end{pmatrix} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ and minimum distance = $\sqrt{(1)^2 + (2)^2 + (-1)^2}$	dM1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	

Question	Scheme	Marks	
	9(a) Alternative 1		
	$\overrightarrow{AB} = \begin{pmatrix} 9 \\ 4 \\ 11 \end{pmatrix} - \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right\} \text{or} \mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$	M1	3.1a
	$ \left\{ \overrightarrow{OA} = \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \text{ and } \overrightarrow{AB} = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \Rightarrow \right\} \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \bullet \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} $	M1	1.1b
	$\cos\theta \left\{ = \frac{\overrightarrow{OA} \bullet \overrightarrow{AB}}{\left \overrightarrow{OA} \right \cdot \left \overrightarrow{AB} \right } \right\} = \frac{\pm \left(\begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \bullet \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right)}{\sqrt{(-3)^2 + (1)^2 + (-7)^2} \cdot \sqrt{(12)^2 + (3)^2 + (18)^2}}$	dM1	1.1b
	$\left\{\cos\theta = \frac{-36+3-126}{\sqrt{59}.\sqrt{477}} = \frac{-159}{\sqrt{59}.\sqrt{477}}\right\}$		
	$\theta = 161.4038029$ or 18.59619709 or $\sin \theta = 0.3188964021$	A1	1.1b
	minimum distance = $\sqrt{(-3)^2 + (1)^2 + (-7)^2} \sin(18.59619709)$	dM1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	
	9(a) Alternative 2		
	$\overline{AB} = \begin{pmatrix} 9 \\ 4 \\ 11 \end{pmatrix} - \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right\} \text{or} \mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$	M1	3.1a
	$\left\{ \overrightarrow{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$	M1	1.1b
	$\left \overrightarrow{OF} \right ^2 = (-3 + 12\lambda)^2 + (1 + 3\lambda)^2 + (-7 + 18\lambda)^2$	dM1	1.1b
	$= 9 - 72\lambda + 144\lambda^{2} + 1 + 6\lambda + 9\lambda^{2} + 49 - 252\lambda + 324\lambda^{2}$		
	$=477\lambda^2-318\lambda+59$	A1	1.1b
	$= 53(3\lambda - 1)^2 + 6$	dM1	3.1a
	minimum distance = $\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	

Quest	ion Scheme	Marks	AOs	
9(b	e.g. Fish F may not swim in an exact straight line from A to B Fish F may hit an obstacle whilst swimming from A to B Fish F may deviate his path to avoid being caught by the octopus	B1	3.5b	
		(1)		
(c)	e.g. Octopus is effectively modelled as a particle – so we may need to look at where the octopus's mass is distributed Octopus may during the fish <i>F</i> 's motion move away from its fixed location at <i>O</i>	B1	3.5b	
		(1)		
		(9 n	narks)	
Quest	ion 9 notes:			
(a) M1: Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d M1: Applies $\overrightarrow{OA} + \lambda$ (their \overrightarrow{AB} or their \overrightarrow{BA} or their d) or equivalent M1: Depends on previous M mark. Writes down (their \overrightarrow{OF} which is in terms of λ)•(their \overrightarrow{AB}) = 0. Can be implied A1: Lambda is correct. e.g. $\lambda = \frac{1}{3}$ for $\overrightarrow{AB} = \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$ or $\lambda = 1$ for $\mathbf{d} = \begin{pmatrix} 4 \\ 1 \\ 6 \end{pmatrix}$ M1: Depends on previous M mark. Complete method for finding $ \overrightarrow{OF} $ A1: $\sqrt{6}$ or awrt 2.4 A1ft: Correct follow through conclusion, which is in context with the question				
1	ative 1			
(a) M1:	Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d			
M1:	Realisation that the dot product is required between \overrightarrow{OA} and their \overrightarrow{AB} . (o.e.)			
M1: A1: M1:	Depends on previous M mark. Applies dot product formula between \overline{OA} and (o.e.) $\theta = \text{awrt } 161.4 \text{ or awrt } 18.6 \text{ or } \sin \theta = \text{awrt } 0.319$ Depends on previous M mark. (their OA) sin(their θ) $\sqrt{6}$ or awrt 2.4	I their \overline{AB}		
A1: A1ft:	Correct follow through conclusion, which is in context with the question			

Question 9 notes continued:		
Alternative 2		
(a)		
M1:	Attempts to find $\overline{OB} - \overline{OA}$ or $\overline{OA} - \overline{OB}$ or the direction vector d	
M1:	Applies $\overrightarrow{OA} + \lambda(\text{their } \overrightarrow{AB} \text{ or their } \overrightarrow{BA} \text{ or their } \mathbf{d})$ or equivalent	
M1:	Depends on previous M mark. Applies Pythagoras by finding $ \overrightarrow{OF} ^2$, o.e.	
A1:	$\left \overrightarrow{OF}\right ^2 = 477\lambda^2 - 318\lambda + 59$	
M1:	Depends on previous M mark. Method of completing the square or differentiating their	
	$\left \overrightarrow{OF} \right ^2$ w.r.t. λ	
A1:	$\sqrt{6}$ or awrt 2.4	
A1ft:	Correct follow through conclusion, which is in context with the question	
(b)		
B1 :	An acceptable criticism for fish F, which is in context with the question	
(c)		
B1:	An acceptable criticism for the octopus, which is in context with the question	