Question	Scheme	Marks	AOs
5	$\mathrm{f}(\mathrm{z})=8 z^{3}+12 z^{2}+6 z+65 ;$ root $\alpha=\frac{1}{2}-i \sqrt{3}$		
(a)	$\frac{1}{2}+\mathrm{i} \sqrt{3}$	B1	1.2
		(1)	
(b)	Attempts quadratic factor: $z^{2}-z+\frac{13}{4}$ or $4 z^{2}-4 z+13$	M1	1.1b
	So $f(z)=\left(4 z^{2}-4 z+13\right)(2 z+5)(\mathrm{oe})$	M1	1.1b
	So roots are $z_{1}=\frac{1}{2}-i \sqrt{3}, z_{2}=\frac{1}{2}+i \sqrt{3}$ and $z_{3}=-\frac{5}{2}$	A1	1.1b
		(3)	
(c)	$\uparrow \eta^{z_{2}}$ Correct complex roots	B1	1.1b
	 Correct real root	B1ft	1.1b
		(2)	
(d)	E.g. $\left\|z_{1}-z_{2}\right\|=2 \sqrt{3},\left\|z_{1}-z_{3}\right\|=\sqrt{\left(\frac{1}{2}+\frac{5}{2}\right)^{2}+3}=\sqrt{12}=2 \sqrt{3}$ and $\left\|z_{2}-z_{3}\right\|=2 \sqrt{3}$ by symmetry. OR $\arg \left(z_{2}-z_{3}\right)=\arg (3+i \sqrt{3})=\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi}{6}$, so (by symmetry) angle at z_{3} is $2 \times \frac{\pi}{6}=\frac{\pi}{3}$, and since by symmetry the angles at z_{1} and z_{2} are equal, they must also each be $\frac{\pi}{3}$ (so all add to π).	M1	3.1a
	All three sides of the triangle are the same length, and so the vertices form an equilateral triangle. OR All three angles are $\frac{\pi}{3}$ and so the triangle formed by the vertices	A1	2.1

Notes:

(a)

B1: Correct conjugate root.
(b)

M1: Attempts quadratic factor $z-2 \operatorname{Re}(\alpha) z+|\alpha|^{2}$ or $(z-\alpha)\left(z-\alpha^{*}\right)$. As a minimum accept an attempt at the product of roots.
M1: Attempts to find the linear term, e.g. by factorisation or dividing by quadratic term or use of product of roots being 65 .
A1: Correct solutions. All three must be stated. Ignore labelling. Answers only score zero marks in (b). Algebra must be used.
(c)

B1: Correct placement of complex roots, symmetric about real axis, in first and fourth quadrants, closer to imaginary axis than real axis. Lines/arrows not needed, just points.
B1ft: Correct placement for real root. If root is correct then on real axis further from origin than other roots, but follow through if a positive root found in (b).
(d)

M1: A complete method to find either all three sides or all three angles of the triangle.
A1: Sides/angles all correct from correct work/reasoning and conclusion made to draw the argument together.

