8(a)
Vol $V_{1}=(\pi) \int_{(0)}^{(8)} y^{2} \mathrm{~d} x=(\pi) \int_{(0)}^{(8)} x^{\frac{4}{3}} \mathrm{~d} x$
$=(\pi)\left[\frac{x^{\frac{7}{3}}}{\frac{7}{3}}\right]_{(0)}^{(8)}$
$=(\pi)\left[\frac{3 \times 8^{\frac{7}{3}}}{7}-0\right]$
$=\pi \times \frac{3 \times 2^{7}}{7}=\frac{384 \pi}{7} *$
(b) Attempts to find the ratio of volume of V_{2} to total volume, using
$\pi \int x^{2} \mathrm{~d} y$ to get V_{2}.

$$
\text { Vol } V_{2}=(\pi) \int_{(0)}^{(4)} x^{2} \mathrm{~d} y=(\pi) \int_{(0)}^{(4)} y^{3} \mathrm{~d} y
$$

So Vol $V_{2}=(\pi)\left[\frac{y^{4}}{4}\right]_{0}^{4}=(\pi)\left(\frac{4^{4}}{4}-0\right)$	M1	1.1 b
$=64 \pi$	A 1	1.1 b
So probability V_{2} selected in a single trial is $p=\frac{64 \pi}{64 \pi+\frac{384 \pi}{7}}\left(=\frac{7}{13}\right)$	M 1	1.1 b
Identifies binomial distribution needed, $X \sim \mathrm{~B}(10$, their $p)$.	M 1	3.1 a
$P(X=8)={ }^{10} C_{8}\left(\frac{7}{13}\right)^{8}\left(\frac{6}{13}\right)^{2}=0.0677(4$ d.p. $)$	A 1	1.1 b
	(7)	

(11 marks)

Notes:

(a)

B1: Correct integral with $y^{2}=x^{\frac{4}{3}}$. No need for π or limits for this mark.
M1: Attempts the integration ($x^{n} \rightarrow x^{n+1}$).
M1: Applies limits 0 and 8 , subtracts correct way. The lower limit of zero may be missing for this mark.
A1*: Simplifies to correct answer, no errors. Evidence of the lower limit being correctly applied should be seen for this mark.
(b)

M1: A full method to find the ratio V_{2} / Total Volume to establish the probability V_{2} is drawn in a single trial.
B1: Correct integral, need not have π or limits at this stage.

M1: Attempts the integration and applies limits of 4 and 0.
A1: Correct volume for V_{2}
M1: Combines result of (a) and their second integral to find the probability V_{2} is drawn in a single trial, ie $p=\frac{\text { their } V_{2} \text { volume }}{\text { Sum of both volumes }}$ or ratio $V_{1}: V_{2}=\frac{384 \pi}{7}: 64 \pi=6: 7$, so $p=\frac{7}{13}$
M1: Demonstrates awareness of the binomial distribution being needed. This may be implied by a correct value (from calculator) if a correct p has been seen, or may be evidenced by writing out the distribution as shown in scheme.
A1: Correct answer to 4 decimal places.

