$$
f(z)=8 z^{3}+12 z^{2}+6 z+65
$$

Given that $\frac{1}{2}-\mathrm{i} \sqrt{3}$ is a root of the equation $\mathrm{f}(\mathrm{z})=0$
(a) write down the other complex root of the equation,
(b) use algebra to solve the equation $f(z)=0$ completely.
(c) Show the roots of $\mathrm{f}(\mathrm{z})$ on a single Argand diagram.
(d) Show that the roots of $\mathrm{f}(\mathrm{z})$ form the vertices of an equilateral triangle in the complex plane.

