Question	Scheme	Marks	AOs
1(a)	$\mathbf{M}^{-1}=\frac{1}{69}\left(\begin{array}{rrr}1 & 13 & 5 \\ -11 & -5 & 14 \\ -26 & 7 & 8\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	$\frac{1}{69}\left(\begin{array}{rrr}1 & 13 & 5 \\ -11 & -5 & 14 \\ -26 & 7 & 8\end{array}\right)\left(\begin{array}{r}-4 \\ 9 \\ 5\end{array}\right)=\ldots$	M1	1.1b
	$x=2, y=1, z=3$ or $(2,1,3)$ or $2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ or $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$	A1	1.1b
		(2)	
(c)	The point where three planes meet	B1ft	2.2a
		(1)	

Notes

(a)

B1: Evidence that the determinant is ± 69 (may be implied by their matrix e.g. where entries are not in exact form: $\pm\left(\begin{array}{ccc}0.014 & 0.188 & 0.072 \\ -0.159 & -0.072 & 0.203 \\ -0.377 & 0.101 & 0.116\end{array}\right)$)(Should be mostly correct)

Must be seen in part (a).

B1: Fully correct inverse with all elements in exact form
(b)

M1: Any complete method to find the values of x, y and z (Must be using their inverse if using the method in the main scheme)
A1: Correct coordinates
A solution not using the inverse requires a complete method to find values for x, y and z for the method mark.
Correct coordinates only scores both marks.
(c)

B1: Describes the correct geometrical configuration.
Must include the two ideas of planes and meet in a point with no contradictory statements.
This is dependent on having obtained a unique point in part (b)

