Question	Scheme	Marks	AOs
2	$w=2 z+1 \Rightarrow z=\frac{w-1}{2}$	B1	3.1a
	$\left(\frac{w-1}{2}\right)^{3}-3\left(\frac{w-1}{2}\right)^{2}+\left(\frac{w-1}{2}\right)+5=0$	M1	3.1a
	$\frac{1}{8}\left(w^{3}-3 w^{2}+3 w-1\right)-\frac{3}{4}\left(w^{2}-2 w+1\right)+\frac{w-1}{2}+5=0$		
	$w^{3}-9 w^{2}+19 w+29=0$	M1	1.1b
		A1	1.1b
		A1	1.1b
		(5)	
ALT 1	$\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\alpha \gamma=1, \alpha \beta \gamma=-5$	B1	3.1a
	New sum $=2(\alpha+\beta+\gamma)+3=9$	M1	3.1a
	New pair sum $=4(\alpha \beta+\beta \gamma+\gamma \alpha)+4(\alpha+\beta+\gamma)+3=19$		
	New product $=8 \alpha \beta \gamma+4(\alpha \beta+\beta \gamma+\gamma \alpha)+2(\alpha+\beta+\gamma)+1=-29$		
	$w^{3}-9 w^{2}+19 w+29=0$	M1	1.1b
		A1	1.1 b
		A1	1.1b
		(5)	
(5 marks)			
Notes			

B1: Selects the method of making a connection between z and w by writing $z=\frac{w-1}{2}$
M1: Applies the process of substituting their $z=\frac{w-1}{2}$ into $z^{3}-3 z^{2}+z+5=0$
(Allow $z=2 w+1$)
M1: Manipulates their equation into the form $w^{3}+p w^{2}+q w+r(=0)$ having substituted their z in terms of w. Note that the " $=0$ " can be missing for this mark.
A1: At least two of p, q, r correct. Note that the " $=0$ " can be missing for this mark.
A1: Fully correct equation including "= 0 "
The first 4 marks are available if another letter is used instead of w but the final answer must be in terms of w.

ALT1

B1: Selects the method of giving three correct equations containing α, β and γ
M1: Applies the process of finding the new sum, new pair sum, new product
M1: Applies $w^{3}-($ new sum $) w^{2}+($ new pair sum $) w-($ new product $)(=0)$
or identifies p as -(new sum) q as (new pair sum) and r as -(new product)
A1: At least two of p, q, r correct.
A1: Fully correct equation including " $=0$ "
The first 4 marks are available if another letter is used instead of w but the final answer must be in terms of w.

