Question	Scheme	Marks	AOs
6(a)	$(3 r-2)^{2}=9 r^{2}-12 r+4$	B1	1.1b
	$\sum_{r=1}^{n}\left(9 r^{2}-12 r+4\right)=9 \times \frac{1}{6} n(n+1)(2 n+1)-12 \times \frac{1}{2} n(n+1)+\ldots$	M1	2.1
	$=9 \times \frac{1}{6} n(n+1)(2 n+1)-12 \times \frac{1}{2} n(n+1)+4 n$	A1	1.1b
	$=\frac{1}{2} n[3(n+1)(2 n+1)-12(n+1)+8]$	dM1	1.1b
	$=\frac{1}{2} n\left[6 n^{2}-3 n-1\right]^{*}$	A1*	1.1b
		(5)	
(b)	$\sum_{r=5}^{n}(3 r-2)^{2}=\frac{1}{2} n\left(6 n^{2}-3 n-1\right)-\frac{1}{2}(4)\left(6(4)^{2}-3 \times 4-1\right)$	M1	3.1a
	$\sum_{r=1}^{28} r \cos \left(\frac{r \pi}{2}\right)=0-2+0+4+0-6+0+8+0-10+0+12+\ldots$	M1	3.1a
	$\begin{gathered} 3 n^{3}-\frac{3}{2} n^{2}-\frac{1}{2} n-166+103 \times 14=3 n^{3} \\ \Rightarrow 3 n^{2}+n-2552=0 \end{gathered}$	A1	1.1b
	$\Rightarrow 3 n^{2}+n-2552=0 \Rightarrow n=\ldots$	M1	1.1b
	$n=29$	A1	2.3
		(5)	

(10 marks)

Notes

(a) Do not allow proof by induction (but the B1 could score for $(3 r-2)^{2}=9 r^{2}-12 r+4$ if seen) B1: Correct expansion
M1: Substitutes at least one of the standard formulae into their expanded expression
A1: Fully correct expression
dM1: Attempts to factorise $\frac{1}{2} n$ having used at least one standard formula correctly. Dependent on the first M mark and dependent on there being an n in all terms.
A1*: Obtains the printed result with no errors seen
(b)

M1: Uses the result from part (a) by substituting $n=4$ and subtracts from the result in (a) in order to find the first sum in terms of n.
M1: Identifies the periodic nature of the second sum by calculating terms. This may be implied by a sum of 14 .
A1: Uses their sum and the given result to form the correct 3 term quadratic
M1: Solves their three term quadratic to obtain at least one value for n
A1: Obtains $n=29$ only or obtains $n=29$ and $n=-\frac{88}{3}$ and rejects the $-\frac{88}{3}$

