Question	Scheme	Marks	AOs
6(a)	$(3r-2)^2 = 9r^2 - 12r + 4$	B1	1.1b
	$\sum_{r=1}^{n} (9r^2 - 12r + 4) = 9 \times \frac{1}{6}n(n+1)(2n+1) - 12 \times \frac{1}{2}n(n+1) + \dots$	M1	2.1
	$=9 \times \frac{1}{6} n(n+1)(2n+1) - 12 \times \frac{1}{2} n(n+1) + 4n$	A1	1.1b
	$= \frac{1}{2}n \Big[3(n+1)(2n+1) - 12(n+1) + 8 \Big]$	dM1	1.1b
	$=\frac{1}{2}n\left[6n^2-3n-1\right]*$	A1*	1.1b
		(5)	
(b)	$\sum_{r=5}^{n} (3r-2)^{2} = \frac{1}{2}n(6n^{2}-3n-1) - \frac{1}{2}(4)(6(4)^{2}-3\times 4-1)$	M1	3.1a
	$\sum_{r=1}^{28} r \cos\left(\frac{r\pi}{2}\right) = 0 - 2 + 0 + 4 + 0 - 6 + 0 + 8 + 0 - 10 + 0 + 12 + \dots$	M1	3.1a
	$3n^{3} - \frac{3}{2}n^{2} - \frac{1}{2}n - 166 + 103 \times 14 = 3n^{3}$ $\implies 3n^{2} + n - 2552 = 0$	A1	1.1b
	$\Rightarrow 3n^2 + n - 2552 = 0 \Rightarrow n = \dots$	M1	1.1b
	<i>n</i> = 29	A1	2.3
		(5)	monl-a)
(10 marks) Notes			

(a) Do not allow proof by induction (but the B1 could score for $(3r-2)^2 = 9r^2 - 12r + 4$ if seen)

B1: Correct expansion

M1: Substitutes at least one of the standard formulae into their expanded expression

A1: Fully correct expression

dM1: Attempts to factorise $\frac{1}{2}n$ having used at least one standard formula correctly. Dependent

on the first M mark and dependent on there being an n in all terms.

A1*: Obtains the printed result with no errors seen

(b) M1: Uses the result from part (a) by substituting n = 4 and subtracts from the result in (a) in order to find the first sum in terms of n.

M1: Identifies the periodic nature of the second sum by calculating terms. This may be implied by a sum of 14.

A1: Uses their sum and the given result to form the correct 3 term quadratic

M1: Solves their three term quadratic to obtain at least one value for n

A1: Obtains n = 29 only or obtains n = 29 and $n = -\frac{88}{3}$ and rejects the $-\frac{88}{3}$