Question	Scheme	Marks	AOs
8(i)	$n=1,\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{1}=\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right), \quad\left(\begin{array}{cc} 4 \times 1+1 & -8(1) \\ 2 \times 1 & 1-4(1) \end{array}\right)=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)$ So the result is true for $n=1$	B1	2.2a
	Assume true for $n=k$ so $\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)^{k}=\left(\begin{array}{cc}4 k+1 & -8 k \\ 2 k & 1-4 k\end{array}\right)$	M1	2.4
	$\begin{gathered} \left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 4 k+1 & -8 k \\ 2 k & 1-4 k \end{array}\right)\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right) \\ \text { or } \\ \left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right)\left(\begin{array}{cc} 4 k+1 & -8 k \\ 2 k & 1-4 k \end{array}\right) \end{gathered}$	M1	1.1b
	$\begin{aligned} & \left(\begin{array}{cc} 4 k+1 & -8 k \\ 2 k & 1-4 k \end{array}\right)\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right)=\left(\begin{array}{cc} 5(4 k+1)-16 k & -8(4 k+1)+24 k \\ 10 k+2(1-4 k) & -16 k-3(1-4 k) \end{array}\right) \\ & \left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right)\left(\begin{array}{cc} 4 k+1 & -8 k \\ 2 k & 1-4 k \end{array}\right)=\left(\begin{array}{cc} 5(4 k+1)-16 k & -40 k-8(1-4 k) \\ 2(1+4 k)-6 k & -16 k-3(1-4 k) \end{array}\right) \end{aligned}$	A1	1.1b
	$=\left(\begin{array}{cc}4(k+1)+1 & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$	A1	2.1
	If true for $n=k$ then true for $n=k+1$, true for $n=1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	
$\begin{gathered} \text { (ii) } \\ \text { Way } 1 \end{gathered}$	$\mathrm{f}(k+1)-\mathrm{f}(k)$		
	When $n=1,4^{n+1}+5^{2 n-1}=16+5=21$ so the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$ so $4^{k+1}+5^{2 k-1}$ is divisible by 21	M1	2.4
	$\mathrm{f}(k+1)-\mathrm{f}(k)=4^{k+2}+5^{2 k+1}-4^{k+1}-5^{2 k-1}$	M1	2.1
	$=4 \times 4^{k+1}+25 \times 5^{2 k-1}-4^{k+1}-5^{2 k-1}$		
	$=3 \mathrm{f}(k)+21 \times 5^{2 k-1}$ or e.g. $=24 \mathrm{f}(k)-21 \times 4^{k+1}$	A1	1.1b
	$\mathrm{f}(k+1)=4 \mathrm{f}(k)+21 \times 5^{2 k-1}$ or e.g. $\mathrm{f}(k+1)=25 \mathrm{f}(k)-21 \times 4^{k+1}$	A1	1.1b
	If true for $n=k$ then true for $n=k+1$, true for $n=1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	

$$
\begin{gathered}
\hline \text { When } n=1,4^{n+1}+5^{2 n-1}=16+5=21 \\
\text { so the statement is true for } n=1 \\
\hline \text { Assume true for } n=k \text { so } 4^{k+1}+5^{2 k-1} \text { is divisible by } 21 \\
\hline \mathrm{f}(k+1)=4^{k+1+1}+5^{2(k+1)-1} \\
\mathrm{f}(k+1)=4 \times 4^{k+1}+5^{2 k+1}=4 \times 4^{k+1}+4 \times 5^{2 k-1}+25 \times 5^{2 k-1}-4 \times 5^{2 k-1} \\
\mathrm{f}(k+1)=4 \mathrm{f}(k)+21 \times 5^{2 k-1}
\end{gathered}
$$

If true for $n=k$ then true for $n=k+1$, true for $n=1$ so true for all (positive integers) n (Allow "for all values")

B1	2.2 a
M1	2.4
M1	2.1
A1	1.1 b
A1	1.1 b
A1	2.4

(ii)
$\mathrm{f}(k+1)-\operatorname{mf}(k)$
Way 3

Assume true for $n=k$ so $4^{k+1}+5^{2 k-1}$ is divisible by 21 $\mathrm{f}(k+1)-m \mathrm{f}(k)=4^{k+2}+5^{2 k+1}-m\left(4^{k+1}+5^{2 k-1}\right)$ $=(4-m) 4^{k+1}+5^{2 k+1}-m \times 5^{2 k-1}$

$$
=(4-m)\left(4^{k+1}+5^{2 k-1}\right)+21 \times 5^{2 k-1}
$$

$$
=(4-m)\left(4^{k+1}+5^{2 k-1}\right)+21 \times 5^{2 k-1}+m f(k)
$$

If true for $n=k$ then true for $n=k+1$, true for $n=1$ so true for all (positive integers) n (Allow "for all values")
2.4
(ii)

Way 4

$$
\begin{gather*}
\mathrm{f}(k)=21 M \tag{6}\\
\text { When } n=1,4^{n+1}+5^{2 n-1}=16+5=21 \\
\text { so the statement is true for } n=1 \\
\text { Assume true for } n=k \text { so } 4^{k+1}+5^{2 k-1}=21 M \\
\mathrm{f}(k+1)=4^{k+1+1}+5^{2(k+1)-1} \\
\mathrm{f}(k+1)=4 \times 4^{k+1}+5^{2 k+1}=4\left(21 M-5^{2 k-1}\right)+5^{2 k+1} \\
\mathrm{f}(k+1)=84 M+21 \times 5^{2 k-1}
\end{gather*}
$$

If true for $n=k$ then true for $n=k+1$, true for $n=1$ so true for all (positive integers) n (Allow "for all values")

Notes

(i)

B1: Shows that the result holds for $n=1$. Must see substitution into the rhs.
The minimum would be: $\left(\begin{array}{cc}4+1 & -8 \\ 2 & 1-4\end{array}\right)=\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)$.
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) $n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for n $=k$ then \ldots etc.)
M1: Sets up a correct multiplication statement either way round
A1: Achieves a correct un-simplified matrix
A1: Reaches a correct simplified matrix with no errors and the correct un-simplified matrix
seen previously. Note that the simplified result may be proved by equivalence.
A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.
(ii) Way 1

B1: Shows that $f(1)=21$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for)
$n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for
$n=k$ then.. etc.)
M1: Attempts $\mathrm{f}(k+1)-\mathrm{f}(k)$ or equivalent work
A1: Achieves a correct expression for $\mathrm{f}(k+1)-\mathrm{f}(k)$ in terms of $\mathrm{f}(k)$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

Way 2

B1: Shows that $\mathrm{f}(1)=21$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for)
$n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then... etc.)
M1: Attempts $\mathrm{f}(k+1)$
A1: Correctly obtains $4 f(k)$ or $21 \times 5^{2 k-1}$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

Way 3

B1: Shows that $f(1)=21$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for)
$n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then \ldots etc.)
M1: Attempts $\mathrm{f}(k+1)-m f(k)$
A1: Achieves a correct expression for $f(k+1)-m f(k)$ in terms of $f(k)$
A1: Reaches a correct expression for $\mathrm{f}(k+1)$ in terms of $\mathrm{f}(k)$
A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

Way 4

B1: Shows that $f(1)=21$
M1: Makes a statement that assumes the result is true for some value of n (Assume (true for)
$n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for
$n=k$ then.. etc.)
M1: Attempts $\mathrm{f}(k+1)$
A1: Correctly obtains $84 M$ or $21 \times 5^{2 k-1}$
A1: Reaches a correct expression for $f(k+1)$ in terms of M and $5^{2 k-1}$
A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

