Question	Scheme	Marks	AOs
8(i)	$n = 1, \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{1} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \begin{pmatrix} 4 \times 1 + 1 & -8(1) \\ 2 \times 1 & 1 - 4(1) \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	B1	2.2a
	So the result is true for $n = 1$		
	Assume true for $n = k$ so $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^k = \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} $ or	Ml	1.1b
	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} $		
	$ \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5(4k+1)-16k & -8(4k+1)+24k \\ 10k+2(1-4k) & -16k-3(1-4k) \end{pmatrix} $ or $ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} = \begin{pmatrix} 5(4k+1)-16k & -40k-8(1-4k) \\ 2(1+4k)-6k & -16k-3(1-4k) \end{pmatrix} $	Al	1.1b
	$= \begin{pmatrix} 4(k+1)+1 & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$	A1	2.1
	<u>If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")</u>	Al	2.4
		(6)	
(ii)	$\mathbf{f}(k+1) - \mathbf{f}(k)$		
Way 1	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4
	$f(k+1) - f(k) = 4^{k+2} + 5^{2k+1} - 4^{k+1} - 5^{2k-1}$	Ml	2.1
	$= 4 \times 4^{k+1} + 25 \times 5^{2k-1} - 4^{k+1} - 5^{2k-1}$		
	$= 3f(k) + 21 \times 5^{2k-1} \text{ or e.g.} = 24f(k) - 21 \times 4^{k+1}$	A1	1.1b
	$f(k+1) = 4f(k) + 21 \times 5^{2k-1} \text{ or e.g. } f(k+1) = 25f(k) - 21 \times 4^{k+1}$	A1	1.1b
	$\frac{\text{If true for } n = k}{\text{Il (positive integers) } n} \text{ (Allow "for all values")}$	Al	2.4
		(6)	1.

(ii)	f(k+1)			
Way 2	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a	
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4	
	$f(k+1) = 4^{k+1+1} + 5^{2(k+1)-1}$	M1	2.1	
	$f(k+1) = 4 \times 4^{k+1} + 5^{2k+1} = 4 \times 4^{k+1} + 4 \times 5^{2k-1} + 25 \times 5^{2k-1} - 4 \times 5^{2k-1}$	A1	1.1b	
	$f(k+1) = 4f(k) + 21 \times 5^{2k-1}$	A1	1.1b	
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true forall (positive integers) n (Allow "for all values")	A1	2.4	
		(6)		
(ii)	$\mathbf{f}(k+1) - m\mathbf{f}(k)$			
Way 3	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a	
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4	
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2k+1} - m(4^{k+1} + 5^{2k-1})$	M1	2.1	
	$= (4-m)4^{k+1} + 5^{2k+1} - m \times 5^{2k-1}$ $= (4-m)(4^{k+1} + 5^{2k-1}) + 21 \times 5^{2k-1}$	A1	1.1b	
	$= (4-m)(4^{k+1}+5^{2k-1})+21\times5^{2k-1}+mf(k)$	A1	1.1b	
	<u>If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")</u>	A1	2.4	
		(6)		
(ii)	$\mathbf{f}(k) = 21M$			
Way 4	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a	
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1} = 21M$	M1	2.4	
	$f(k+1) = 4^{k+1+1} + 5^{2(k+1)-1}$	M1	2.1	
	$f(k+1) = 4 \times 4^{k+1} + 5^{2k+1} = 4(21M - 5^{2k-1}) + 5^{2k+1}$	A1	1.1b	
	$f(k+1) = 84M + 21 \times 5^{2k-1}$	A1	1.1b	
	<u>If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")</u>	A1	2.4	
		(6)		
	(12 mark			

Notes

B1: Shows that the result holds for n = 1. Must see **substitution** into the rhs.

The minimum would be: $\begin{pmatrix} 4+1 & -8 \\ 2 & 1-4 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$.

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Sets up a correct multiplication statement either way round

A1: Achieves a correct un-simplified matrix

A1: Reaches a correct simplified matrix with no errors **and the correct un-simplified matrix seen previously.** Note that the simplified result may be proved by equivalence.

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

(ii) Way 1

B1: Shows that f(1) = 21

M1: Makes a statement that assumes the result is true for some value of *n* (Assume (true for)

n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1) - f(k) or equivalent work

A1: Achieves a correct expression for f(k + 1) - f(k) in terms of f(k)

A1: Reaches a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

Way 2

B1: Shows that f(1) = 21

M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for

n = k then ... etc.)

M1: Attempts f(k + 1)

A1: Correctly obtains 4f(k) or $21 \times 5^{2k-1}$

A1: Reaches a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

Way 3

B1: Shows that f(1) = 21

M1: Makes a statement that assumes the result is true for some value of *n* (Assume (true for)

n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.)

M1: Attempts f(k + 1) - mf(k)

A1: Achieves a correct expression for f(k + 1) - mf(k) in terms of f(k)

A1: Reaches a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

 $\overline{(i)}$

Way 4

- B1: Shows that f(1) = 21
- M1: Makes a statement that assumes the result is true for some value of *n* (Assume (true for)
- n = k then ... etc.)
- M1: Attempts f(k + 1)
- A1: Correctly obtains 84M or $21 \times 5^{2k-1}$
- A1: Reaches a correct expression for f(k + 1) in terms of *M* and 5^{2k-1}
- A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.