Question	Scheme	Marks	AOs	
1. (a)	$(\det(\mathbf{M}) =) (4) (-7) - (2) (-5)$	M1	1.1a	
	M is non-singular because $det(\mathbf{M}) = -18$ and so $det(\mathbf{M}) \neq 0$	A1	2.4	
		(2)		
(b)	Area $R = \frac{\text{Area } S}{(\pm) \det \mathbf{M} } = \dots$	M1	1.2	
	Area $(R) = \frac{63}{ -18 } = \frac{7}{2}$ oe	A1ft	1.1b	
		(2)		
(c)	$ \begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \begin{pmatrix} 4x - 10x \\ 2x - 14x \end{pmatrix} $	M1	1.1b	
	$= \begin{pmatrix} -6x \\ -12x \end{pmatrix}$ and so all points on $y = 2x$ map to points on $y = 2x$, hence the line is invariant. $OR = -6 \begin{pmatrix} x \\ 2x \end{pmatrix}$ hence $y = 2x$ is invariant.	A1	2.1	
		(2)		
		(6	marks)	
	Notes			
(a)	M1 An attempt to find det(M). Just the calculation is sufficient. Site of -18 implies this mark, which may be embedded in an attempt at the inverse det(M) = -18 and reference to zero, e.g. $-18 \neq 0$ and conclusion. The conclusion may precede finding the determinant (e.g. "Non-singular if			
(b)	det(M) \neq 0, det(M) = -18 \neq 0" is sufficient or accept "Non-sin det(M) = -18, therefore non-singular" or some other indication Need not mention "det(M)" to gain both marks here, a correct statement -18 \neq 0, and conclusion hence M is non-singular can	det(\mathbf{M}) $\neq 0$, det(\mathbf{M}) = -18 $\neq 0$ " is sufficient or accept "Non-singular if det(\mathbf{M}) $\neq 0$, det(\mathbf{M}) = -18, therefore non-singular" or some other indication of conclusion.) Need not mention "det(\mathbf{M})" to gain both marks here, a correct calculation, statement -18 $\neq 0$, and conclusion hence \mathbf{M} is non-singular can gain M1A1. Recalls determinant is needed for area scale factor by dividing 63 by ±their		
		$\frac{7}{2}$ or follow through $\frac{63}{ \text{their det} }$. Must be positive and should be simplified to		
(c)	single fraction or exact decimal. (Allow if made positive following division by a negative determinant.)			
	M1 Attempts the matrix multiplication shown or with equivalent,	e.g $\begin{pmatrix} \frac{1}{2} y \\ y \end{pmatrix}$. I	May	
	$use\begin{pmatrix} x\\ y \end{pmatrix}$ and substitute $y = 2x$ later and this is fine for the met	$use\begin{pmatrix} x \\ y \end{pmatrix}$ and substitute $y = 2x$ later and this is fine for the method.		
	Correct multiplication and working leading to conclusion that the line is invariant. If the -6 is not extracted, they must make reference to image points being on line			
	$y = 2x$. If the -6 is extracted to show it is a multiple of $\begin{pmatrix} x \\ 2x \end{pmatrix}$	followed by a	a	
	conclusion "invariant" as minimum.			

Notes Continued					
Alt for (c)	(a) 1 $(-7 \ 5)(x)$ $-1(-7x+10x)$	M1	1.1b		
	$ \begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{-18} \begin{pmatrix} -7 & 5 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \frac{-1}{18} \begin{pmatrix} -7x + 10x \\ -2x + 8x \end{pmatrix} $				
	$=\frac{-1}{18}\binom{3x}{6x}\left(=\frac{-1}{6}\binom{x}{2x}\right) \Rightarrow b=2a \text{ so points on line } y=2x \text{ map to}$	A1	2.1		
	points on y= 2x, hence it is invariant. Marks as per main scheme,				
Alt 2	(Since linear transformations map straight lines to straight lines)	M1	1.1b		
	E.g. (1,2) is on line $y = 2x$, and $\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4-10 \\ 2-14 \end{pmatrix}$				
	$=\begin{pmatrix} -6\\ -12 \end{pmatrix}$, which is also on the line <i>y</i> =2 <i>x</i> , hence as (0,0) and (1,2) both	A1	2.1		
	map to points on $y = 2x$ (and transformation is linear) then $y = 2x$ is invariant.				
	Notes				
	M1 Identifies a point on the line $y = 2x$ and finds its image under T .				
	must be a clear statement it is because this is on the line, but fo accept with any line on $y = 2x$ without statement.	r other poir	nts		
	A1 Shows the image and another point, which may be $(0,0)$, on $y=2\lambda$	oboth map	to		
	points on $y = 2x$ concludes line is invariant. Need not reference	transformat	tion		
Alt 3	being linear for either mark here. 4x - 5(mr + a) = Y	M1	2.1		
All 5	$\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} \Rightarrow \frac{4x-5(mx+c) = X}{2x-7(mx+c) = mX+c}$		2.1		
	$\Rightarrow 2x - 7(mx + c) = m(4x - 5(mx + c)) + c$				
	$\Rightarrow (5m^2 - 11m + 2)x + (5m - 8)c = 0$				
	$\Rightarrow (5m-1)(m-2) = 0 \Rightarrow m = \dots$				
	Or similar work with $c = 0$ throughout.				
	$(5m - 8 \neq 0 \Longrightarrow c = 0)$	A1	1.1b		
	Hence $m = 2$ gives an invariant line (with $c = 0$), so $y = 2x$ is invariant.				
-	Notes	anal invania	nt ling		
	M1 Attempts to find the equation of a general invariant line, or general through the origin (so may have $c = 0$ throughout). To gain the				
	must progress from finding the simultaneous equations to forming a quadratic in m				
	and solving to a value of <i>m</i>.A1 Correct quadratic in <i>m</i> found, with <i>m</i> = 2 as solution (ignore th)	a other) and	1		
	A Correct quadratic in <i>m</i> found, with $m = 2$ as solution (ignore in deduction that hence $y = 2x$ is an invariant line. Ignore errors in				
	as $c = 0$ is always a possible solution. No need to see $c = 0$ derived by the second secon				