

Notes Continued

Alt for (c)	$\binom{a}{b}=\frac{1}{-18}\left(\begin{array}{ll}-7 & 5 \\ -2 & 4\end{array}\right)\binom{x}{2 x}=\frac{-1}{18}\binom{-7 x+10 x}{-2 x+8 x}$		M1	1.1b
	$=\frac{-1}{18}\binom{3 x}{6 x}\left(=\frac{-1}{6}\binom{x}{2 x}\right) \Rightarrow b=2 a$ so points on line $y=2 x$ map to points on $y=2 x$, hence it is invariant.		A1	2.1
	Marks as per main scheme,			
Alt 2	(Since linear transformations map straight lines to straight lines...) E.g. $(1,2)$ is on line $y=2 x$, and $\left(\begin{array}{ll}4 & -5 \\ 2 & -7\end{array}\right)\binom{1}{2}=\binom{4-10}{2-14}$		M1	1.1b
	$=\binom{-6}{-12}$, which is also on the line $y=2 x$, hence as $(0,0)$ and $(1,2)$ both map to points on $y=2 x$ (and transformation is linear) then $y=2 x$ is invariant.		A1	2.1
	Notes			
	M1	Identifies a point on the line $y=2 x$ and finds its image under T. If $(0,0)$ is used there must be a clear statement it is because this is on the line, but for other points accept with any line on $y=2 x$ without statement.		
	A1	Shows the image and another point, which may be (0,0), on $y=2 x$ both map to points on $y=2 x$ concludes line is invariant. Need not reference transformation being linear for either mark here.		
Alt 3	$\begin{aligned} & \left(\begin{array}{cc} 4 & -5 \\ 2 & -7 \end{array}\right)\binom{x}{m x+c}=\binom{X}{m X+c} \Rightarrow \begin{array}{c} 4 x-5(m x+c)=X \\ 2 x-7(m x+c)=m X+c \end{array} \\ & \Rightarrow 2 x-7(m x+c)=m(4 x-5(m x+c))+c \\ & \Rightarrow\left(5 m^{2}-11 m+2\right) x+(5 m-8) c=0 \\ & \Rightarrow(5 m-1)(m-2)=0 \Rightarrow m=\ldots \end{aligned}$ Or similar work with $c=0$ throughout.		M1	2.1
	$(5 m-8 \neq 0 \Rightarrow c=0)$ Hence $m=2$ gives an invariant line (with $c=0$), so $y=2 x$ is invariant.		A1	1.1b
	Notes			
	M1	Attempts to find the equation of a general invariant line, or general invariant line through the origin (so may have $c=0$ throughout). To gain the method mark they must progress from finding the simultaneous equations to forming a quadratic in m and solving to a value of m.		
	A1	Correct quadratic in m found, with $m=2$ as solution (ignore the other) and deduction that hence $y=2 x$ is an invariant line. Ignore errors in the ($5 m-8$) here as $c=0$ is always a possible solution. No need to see $c=0$ derived.		

