Question		Scheme	Marks	AOs
2.	$\{w = x -$	$+3 \Longrightarrow $ $\} x = w - 3$	B1	3.1a
	2(w-3)	$(y^{3} + 6(w - 3)^{2} - 3(w - 3) + 12 (= 0))$	M1	1.1b
	$2w^3 - 1$	$8w^{2} + 54w - 54 + 6(w^{2} - 6w + 9) - 3w + 9 + 12(=0)$		
		$2w^3 - 12w^2 + 15w + 21 = 0$	M1	3.1a
		So p = 2, q = -12, r = 15 and s = 21	A1	1.1b
		(50p - 2, q - 12, r = 15 and 5 - 21)	A1 (5)	1.1b
		6 3 12	(5)	
ALT 1	$\alpha + \beta$	$+\gamma = -\frac{6}{2} = -3, \ \alpha\beta + \beta\gamma + \alpha\gamma = -\frac{3}{2}, \ \alpha\beta\gamma = -\frac{12}{2} = -6$	B1	3.1a
	sum roc	$bts = \alpha + 3 + \beta + 3 + \gamma + 3$		
		$= \alpha + \beta + \gamma + 9 = -3 + 9 = 6$		
	pair sun	pair sum = $(\alpha + 3)(\beta + 3) + (\alpha + 3)(\gamma + 3) + (\beta + 3)(\gamma + 3)$		
		$= \alpha\beta + \alpha\gamma + \beta\gamma + 6(\alpha + \beta + \gamma) + 27$		
	$= -\frac{3}{2} + 6 \times -3 + 27 = \frac{15}{2}$ M1 3.1			3.1a
	$\frac{2}{\text{product} = (\alpha + 3)(\beta + 3)(\gamma + 3)}$			
	*	$= \alpha\beta\gamma + 3(\alpha\beta + \alpha\gamma + \beta\gamma) + 9(\alpha + \beta + \gamma) + 27$		
		$= -6 + 3 \times -\frac{3}{2} + 9 \times -3 + 27 = -\frac{21}{2}$		
		$w^3 - 6w^2 + \frac{15}{2}w - \left(-\frac{21}{2}\right) (=0)$	M1	1.1b
	$2w^3 - 12w^2 + 15w + 21 = 0$		A1	1.1b
		(So $p = 2$, $q = -12$, $r = 15$ and $s = 21$)	A1	1.1b
			(5)	• `
(5 marks)				
	NotesB1Selects the method of making a connection between x and w by writing $x = w - 3$			
		M1 Applies the process of substituting their $x = aw \pm b$ into $2x^3 + 6x^2 - 3x + 12 (= 0)$		
		So accept e.g. if $x = \frac{W}{3}$ is used.		_ (
	M1	5		
		equation. This mark is for manipulating their resulting equation into the form		
		$pw^{3} + qw^{2} + rw + s(=0)$ ($p \neq 0$). The "= 0" may be implied for		
See note	A1	A1 At least three of p , q , r and s are correct in an equation with integer coefficients.		
	A 1	(need not have "= 0") Connect final equation including " 0 " Accept integer multiple	~	
ALT 1	 A1 Correct final equation, including "=0". Accept integer multiples. B1 Selects the method of giving three correct equations each containing α, β and γ. 			
ALTI	M1			
	M1			
		Must be correct identities, but if quoted allow slips in substitution, but the "=0"		
	may be implied.			
See note	A1 At least three of p , q , r and s are correct in an equation with integer coefficients. (need not have "=0")			
	A1	Correct final equation, including "=0". Accept multiples with in	nteger coeff	icients.
Note: may use another variable than w for the first four marks, but the final equation must be in terms of w				
Notes: Do not isw the final two A marks – if subsequent division by 2 occurs then mark the final answer				
answer.				