Question	Scheme	Marks	AOs
3	$n=1, \quad \sum_{r=1}^{1} \frac{1}{(2 r-1)(2 r+1)}=\frac{1}{1 \times 3}=\frac{1}{3}$ and $\frac{n}{2 n+1}=\frac{1}{2 \times 1+1}=\frac{1}{3}$ (true for $n=1$)	B1	2.2a
	Assume general statement is true for $n=k$. So assume $\sum_{r=1}^{k} \frac{1}{(2 r-1)(2 r+1)}=\frac{k}{2 k+1}$ is true.	M1	2.4
	$\left(\sum_{r=1}^{k+1} \frac{1}{(2 r-1)(2 r+1)}=\right)^{\prime \prime} \frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}$	M1	2.1
	$=\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)}$	dM1	1.1b
	$=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)}=\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{(k+1)}{2(k+1)+1}$ or $\frac{k+1}{2 k+3}$	A1	1.1b
	As $\sum_{r=1}^{k+1} \frac{1}{(2 r-1)(2 r+1)}=\frac{(k+1)}{2(k+1)+1}$ then the general result is true for $n=k+1$ As the general result has been shown to be true for $n=1$, and true for $\underline{n=k \text { implies true for } n=k+1}$, so the result is true for all $n \in \mathbb{N}$	A1cso	2.4
		(6)	
			arks)

Notes

B1
Substitutes $n=1$ into both sides of the statement to show they are eqaul. As a minimum expect to see $\frac{1}{1 \times 3}$ and $\frac{1}{2+1}$ for the substitutions. (No need to state true for $n=1$ for this mark.)
M1 Assumes (general result) true for $n=k$. (Assume (true for) $n=k$ is sufficient - note that this may be recovered in their conclusion if they say e.g. if true for $n=k$ then ... etc.)
M1 Attempts to add $(k+1)$ th term to their sum of k terms. Must be adding the $(k+1)$ th term but allow slips with the sum.
dM1 Depends on previous M. Combines their two fractions over a correct common denominator for their fractions, which may be $(2 k+1)^{2}(2 k+3)$ (allow a slip in the numerator).
A1 Correct algebraic work leading to $\frac{(k+1)}{2(k+1)+1}$ or $\frac{k+1}{2 k+3}$
cso Depends on all except the \mathbf{B} mark being scored (but must have an attempt to show the $n=1$ case). Demonstrates the expression is the correct for $n=k+1$ (both sides must have been seen somewhere) and gives a correct induction statement with all three underlined statements (or equivalents) seen at some stage during their solution (so true for $n=1$ may be seen at the start).
For demonstrating the correct expression, accept giving in the form $\frac{(k+1)}{2(k+1)+1}$, or reaching $\frac{k+1}{2 k+3}$ and stating "which is the correct form with $n=k+1$ " or similar but some indication is needed.

Note: if mixed variables are used in working (r 's and k 's mixed up) then withhold the final A .
Note: If n is used throughout instead of k allow all marks if earned.

