Question	Scheme	Marks	AOs		
4.	$(\mathbf{r} =) \begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \mathbf{or} \begin{pmatrix} -2 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} (\text{oe})$	M1	1.1b		
	So meet if $\begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = -7 \Longrightarrow (-2+\lambda) \times 1 + (5-\lambda) \times -2 + (4-3\lambda) \times 1 = -7$	M1 A1	3.1a 1.1b		
	$\Rightarrow 0\lambda - 8 = -7 \Rightarrow -8 = -7$ a contradiction so no intersection	A1ft	2.3		
	Hence l is parallel to Π but not in it.	Alcso	3.2a		
	• • • • • • • • • • • • • • • • • • •	(5)			
		(5	marks)		
	Notes				
Alt 1	 M1 Forms a parametric form for the line. Allow one shp. M1 Substitutes into the equation of the plane to an equation in λ. May use Cartesian form of plane to substitute into. A1 Correct equation in λ A1ft Simplifies and derives a contradiction and deduces line and plane do not meet. Follow through in their initial equation in λ so contradiction so no intersection if λ_disappears and constants unequal line lies in plane if a tautology is arrived at meet in a point if a solution for λ is found. But do not allow for incorrect simplification from a correct initial equation in λ Note that a miscopy/misread of 7 instead of -7 can therefore score a maximum of M1M1A0A1A0. A1cso Correct deduction from correct working. This may be seen two separate statements in their working. You may see attempts at showing the line is parallel before/after deducing there is no intersection. 				
	$ \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 1 \times 1 + (-1) \times (-2) + (-3) \times 1 = 0 $	M1	3.1a		
	Hence l is parallel to Π	A1	1.1b		
	(-2,5,4) on <i>l</i> , but $(1)(-2) + (-2)(5) + 1(4) = -8$	M1	1.1b		
	$-8 \neq -7$ so $(-2, 5, 4)$ is not on the plane.	A1ft	2.3		
	Hence <i>l</i> is (parallel to Π but) not in the plane.	Alcso	3.2a		
		(5)			
		(5	marks)		
Alt 1 Notes					
	 M1 Attempts the dot product between the two direction vector A1 Shows dot product is zero and makes the correct deduction parallel to plane. M1 Finds a point on <i>l</i> and substitutes into the equation of <i>I</i>7 (1) 	's. n that line i (vector or	is		
	Cartesian) A1ft Simplifies and derives a contradiction – follow through th arrive at a tautology, they should deduce the line is in the	eir equatio plane.	n, so if		

Question	Scheme	Marks	AOs		
Alt 2	Attempts to solve $\frac{x+2}{1} = \frac{y-5}{-1} = \frac{z-4}{-3}$ and $x-2y+z = -7$ simultaneously – eliminates one variable for M mark.	M1	3.1a		
	e.g. $y = -(x+2)+5 = -x+3 \Rightarrow x-2(-x+3)+z = -7 \Rightarrow 3x+z = -1$ (oe)	A1	1.1b		
	Solves reduced equations, e.g. $-3(x+2) = z - 4 \Rightarrow 3x + z = -2$ and $3x + z = -1 \Rightarrow (3x + z) - (3x + z) = -2 - (-1)$	M1	1.1b		
	$\Rightarrow 0 = -1$ a contradiction so no intersection	A1ft	2.3		
	Hence l is parallel to Π but not in it.	A1cso	3.2a		
		(5)			
	(5 marks)				
Alt 2 notes					
	M1 Attempts to solve the Cartesian equation of the line an plane equation to eliminate one variable for the M.	d plane, u	sing the		
	A1 Correct elimination of their chosen variable. (E.g may see $-2x-2y-2 = -7$ etc)	z = 3 - 3y + z	= -7 or		
	 M1 Solves the reduced equations in two variables A1ft and derives a contradiction/line and plane do not meet their result, so may reach a tautology and deduce lies in p 	bolves the reduced equations in two variables and derives a contradiction/line and plane do not meet. Follow through heir result, so may reach a tautology and deduce lies in plane, or find single			
	Alcso Solution and deduce meet in a point. Correct deduction from correct working.				