Question	Scheme		Marks	AOs
5 (a)	Complex roots of a real polynomial occur in conjugate pairs		M1	1.2
	so a polynomial with z_{1}, z_{2} and z_{3} as roots also needs $z_{2}{ }^{*}$ and $z_{3}{ }^{*}$ as roots, so 5 roots in total, but a quartic has at most 4 roots, so no quartic can have z_{1}, z_{2} and z_{3} as roots.		A1	2.4
			(2)	
(b)	$\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{-1+2 \mathrm{i}-(-2)}{1+\mathrm{i}-(-2)}=\frac{1+2 \mathrm{i}}{3+\mathrm{i}} \times \frac{3-\mathrm{i}}{3-\mathrm{i}}=\ldots$		M1	1.1b
	$=\frac{3-i+6 i+2}{9+1}=\frac{5+5 i}{10}=\frac{1}{2}+\frac{1}{2} \mathrm{i}$ оe		A1	1.1b
	As $\frac{1}{2}+\frac{1}{2} \mathrm{i}$ is in the first quadrant (may be shown by diagram), hence $\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)=\arctan \left(\frac{1 / 2}{1 / 2}\right)(=\arctan (1))=\frac{\pi}{4} *$		A1*	2.1
			(3)	
(c)	$\arg \left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)=\arg \left(z_{2}-z_{1}\right)-\arg \left(z_{3}-z_{1}\right)=\arg (1+2 \mathrm{i})-\arg (3+\mathrm{i})$		M1	1.1b
	Hence $\arctan (2)-\arctan \left(\frac{1}{3}\right)=\frac{\pi}{4} *$		A1*	2.1
			(2)	
(d)	 Line passing through z_{2} and the negative imaginary axis drawn. Area below and left of their line shaded, where the line must have negative gradient passing through negative imaginary axis but need not pass through z_{2}		B1	1.1b
			B1	1.1b
	Unless otherwise indicated by the student mark Diagram 1(if used) if there are multiple attempts.			
	(9 marks)			

(a)		$\mathbf{M 1}$
A1	$\begin{array}{l}\text { Some evidence that complex roots occur as conjugate pairs shown, e.g. stated } \\ \text { as in scheme, or e.g. identifying if }-1+2 \mathrm{i} \text { is a root then so is }-1-2 \mathrm{i} . \text {. Mere } \\ \text { mention of complex conjugates is sufficient for this mark. } \\ \text { A complete argument, referencing that a quartic has at most 4 roots, but } \\ \text { would need at least } 5 \text { for all of } z_{1}, z_{2} \text { and } z_{3} \text { as roots. } \\ \text { There should be a clear statement about the number of roots of a quartic (e.g a } \\ \text { quartic has four roots), and that this is not enough for the two conjugate pairs and } \\ \text { real root. }\end{array}$	
(b)	$\mathbf{M 1}$	$\begin{array}{l}\text { Substitutes the numbers in expression and attempts multiplication of } \\ \text { numerator and denominator by the conjugate of their denominator or uses } \\ \text { calculator to find the quotient. (May be implied.) } \\ \text { NB Applying the difference of arguments and using decimals is M0 here. }\end{array}$
A1	$\begin{array}{l}\text { Obtains } \frac{1}{2}+\frac{1}{2} \text { i. (May be from calculator.) Accepted equivalent Cartesian } \\ \text { forms. } \\ \text { Uses arctan on their quotient and makes reference to first quadrant or draws }\end{array}$	
diagram to show they are in the first quadrant. to justify the argument.		

