Question	Scheme	Marks	AOs
8. (a)	Note: Allow alternative vector forms throughout, e.g row vectors, i , j , k notation $\mathbf{b} = \pm \begin{bmatrix} 300\\ 300\\ -50 \end{bmatrix} - \begin{bmatrix} -300\\ 400\\ -150 \end{bmatrix} = \pm \begin{bmatrix} 600\\ -100\\ 100 \end{bmatrix}$	M1	1.1b
	So $\mathbf{r} = \begin{pmatrix} -300\\400\\-150 \end{pmatrix} + \lambda \begin{pmatrix} 600\\-100\\100 \end{pmatrix}$ oe $\begin{pmatrix} e.g. \ \mathbf{r} = \begin{pmatrix} 300\\300\\-50 \end{pmatrix} + \lambda \begin{pmatrix} 6\\-1\\1 \end{pmatrix} \end{pmatrix}$	A1	2.5
		(2)	
(b)(i)	k = 200	B1	2.2a
	If <i>M</i> is the point on mountain, and <i>X</i> a general point on the line then eg. $\overrightarrow{MX} = \begin{pmatrix} -300\\ 400\\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 600\\ -100\\ 100 \end{pmatrix} - \begin{pmatrix} 100\\ k\\ 100 \end{pmatrix} = \begin{pmatrix} -400 + 600\lambda\\ 400 - k - 100\lambda\\ -250 + 100\lambda \end{pmatrix} = \begin{pmatrix} -400 + 600\lambda\\ 200 - 100\lambda\\ -250 + 100\lambda \end{pmatrix}$ May be in terms of <i>k</i> or with <i>k</i> = 200 used.	M1	3.1b
	e.g. $\begin{pmatrix} -400 + 600\lambda \\ 200 - 100\lambda \\ -250 + 100\lambda \end{pmatrix} \bullet \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = 0 \Longrightarrow \lambda = \dots$	dM1	1.1b
	So e.g. $\overrightarrow{OX} = \begin{pmatrix} -300\\400\\-150 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 600\\-100\\100 \end{pmatrix} = \dots$	M1	3.4
	So coordinates of X are (150, 325, -75) Accept as $\begin{pmatrix} 150\\ 325\\ -75 \end{pmatrix}$	A1	1.1b
		(5)	
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} = \dots$	M1	1.1b
	Awrt $221m$ from correct working, so λ must have been correct. (Must include units)	A1	1.1b
		(2)	
(c)	$\left \overrightarrow{OP} \right = \sqrt{(-300)^2 + 400^2 + (-150)^2} \approx 522$ $\left \overrightarrow{OQ} \right = \sqrt{300^2 + 300^2 + 50^2} \approx 427$	M1	1.1b
	New tunnel length is significantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed.	A1ft	2.2b
		(2)	
(d)	E.g. The mountainside is not likely to be flat so a plane may not be a good model.The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate.A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the model.	B1	3.5b
		(1)	
		(12	marks)

Notes				
(a)	M1	Attempts the direction between positions P and Q . If no method shown, two correct		
		entries imply the method.		
	A1	A correct equation in the correct form. Any point on the line may used, and any		
		non-zero multiple of the direction. Must begin $\mathbf{r} = \dots$		
(b)		Note: mark part (b) as a whole.		
(i)	B1	Correct value of <i>k</i> deduced.		
	M1	Realises the need to find the distance from the point on the mountain to a general point on the line.		
	dM1	Takes the dot product with the direction vector of line and sets to zero and proceeds to find a value of λ . If working with <i>k</i> as well, allow for finding either λ in terms of <i>k</i> or <i>k</i> in terms of λ .		
	M1	Substitutes their λ into their line equation. (This may not have come from correct work, but the method is for using the line equation here.) May be implied by two out of three correct coordinates for their λ		
		Note: May omit this step and substitute λ into \overrightarrow{MX} . This gains M0 here, but can		
	A1	gain M1A1 in (ii) for finding the length of \overline{MX} . Correct point.		
(b)(ii) M1		Uses the distance formula with their point and M , or with their \overrightarrow{MX} from (i). (May be implied by two out of three correct coordinates for their λ)		
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m		
(c)	M1	Calculates the two distances <i>OP</i> and <i>OQ</i> .		
	A1ft	Makes an appropriate conclusion for their tunnel length, but distances <i>OP</i> and <i>OQ</i> must be correct. A reason and a conclusion is needed. Accept for reason e.g "significantly shorter" or "tunnel is more than 100m less than either existing accessway", as these act as a comparative judgement. But do not accept just "shorter" or just inequalities given with no comparative evidence.		
(d)	B1	Any appropriate criticism of the model given. The model must be referred to in some way – e.g. criticise the straightness/thickness of line, flatness of plane or lack of taking strata etc of mountain into account (as e.g this means line may not be straight). Note: reference to measurements not being correct is NOT a limitation of the model.		

For reference Some of the other common equations/values of λ in (b)(i) are:

$$\overline{MX} = \begin{pmatrix} -300\\ 400\\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 6\\ -1\\ 1 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} -400 + 6\lambda\\ 200 - \lambda\\ -250 + \lambda \end{pmatrix} \Rightarrow \lambda = 75$$
$$\overline{MX} = \begin{pmatrix} 300\\ 300\\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 600\\ -100\\ 100 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 600\lambda\\ 100 - 100\lambda\\ -150 + 100\lambda \end{pmatrix} \Rightarrow \lambda = -\frac{1}{4}$$
$$\overline{MX} = \begin{pmatrix} 300\\ 300\\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 6\\ -1\\ 1 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 6\lambda\\ 100 - \lambda\\ -150 + \lambda \end{pmatrix} \Rightarrow \lambda = -25$$

(If the negative direction vectors are used in any case, the value of λ is just the negative of the above.) See Appendix for some alternatives to part (b)

Appendix: Alternatives to 8(b)

Note that variations may occur with the line equation chosen in part (a), but mark as follows:

Question		Scheme	Marks	AOs		
Alt 1 (b)(i)	As per main scheme.			2.2a 3.1b		
	$d^{2} = (-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ = 380000\lambda^{2} - 570000\lambda + 262500 = 380000 $\left(\lambda - \frac{3}{4}\right)^{2} + 48750 \Rightarrow \lambda = \dots$			1.1b		
	As per	main scheme.	M1 A1	3.4 1.1b		
(ii)	Lengtl	n of tunnel is $\sqrt{"48750"} = \dots$	(5) M1	1.1b		
	Awrt 2 been d	221m from correct working, so completion of square must have correct. (Must include units)	A1	1.1b		
			(2)			
	Notes					
(i)	M1 Realises the need to find the distance from the point on the mountain to a general point on the line.					
	Attempts the distance or distance squared of MX , expands and completes the square to find the value of λ for which distance is minimum. May obtain other					
		forms for the completed square. Look for $A(B\lambda - C) = D + "26$	52500" whe	ere		
	M1A	A, B, C, $D \neq 0$ but B may be 1. As per main scheme.				
(ii)	M1 Correct method for the distance. May be as per main scheme, or via extracting fro the completed square constant term.					
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m		-		
Alt 2 (b)(i)	As per	main scheme.	B1 M1	2.2a 3.1b		
	$d^{2} = ($	$(-400+600\lambda)^{2}+(200-100\lambda)^{2}+(-250+100\lambda)^{2}$				
	$= 380000\lambda^2 - 570000\lambda + 262500$		dM1	1.1b		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(d\right)$	$^{2}) = 0 \Longrightarrow 760000\lambda - 570000 = 0 \Longrightarrow \lambda = \dots$				
	As per	main scheme.	M1 A1	3.4 1.1b		
			(5)			
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} =$			1.1b		
	Awrt 2	221m from correct working, differentiation etc must have been t. (Must include units)	A1	1.1b		
			(2)			

		Notes					
		As per main scheme except for:					
(i)	dM1	Attempts the distance or distance squared of \overline{MX} , differentiates and set to zero to					
		find λ for minimum distance.					
(ii)	M1	May substitute λ into the distance squared formula to find distance					
Alt 3	k = 200		B1	2.2a			
(D)(1)	(i) If <i>M</i> is the point on mountain, then e.g (may use <i>Q</i> rather than <i>P</i>) $\overline{MP} = \begin{pmatrix} -400\\ 200\\ -250 \end{pmatrix} \Rightarrow \cos\theta = \frac{\begin{pmatrix} -400\\ 200\\ -250 \end{pmatrix} \cdot \begin{pmatrix} 600\\ -100\\ 100 \end{pmatrix}}{\sqrt{(-400)^2 + 200^2 + (-250)^2} \sqrt{600^2 + (-100)^2 + 100^2}}$ $\overrightarrow{O} \cos\theta = -\frac{\langle \varphi \varphi \varphi \varphi \rangle}{\sqrt{(-400)^2 + 200^2 + (-250)^2} \sqrt{600^2 + (-100)^2 + 100^2}}$						
	$\Rightarrow \overline{P}$	$\vec{K} = \vec{MP} \cos \theta =$	dM1	1.1b			
	$\overline{OX} =$	M1	3.4				
	So coo	ordinates of <i>X</i> are (150, 325, -75) Accept as $\begin{pmatrix} 150 \\ 325 \\ -75 \end{pmatrix}$	A1	1.1b			
			(5)				
(ii)	Length	n of tunnel is $ \overrightarrow{MP} \sin\theta =$ (oe)	M1	1.1b			
	Awrt 2	221m from correct working. (Must include units)	A1	1.1b			
			(2)				
		Notes					
(i)	B1	Correct value of <i>k</i> deduced.					
	M1	M1 Finds \overrightarrow{MP} (or \overrightarrow{MO}) and attempts scalar product formula with this and the direction					
		of the line to find the angle or cosine of the angle between line and	\overrightarrow{MP} (or \overrightarrow{I}	\overrightarrow{MO})			
	dM1	Uses their angle with the cosine to find the length of \overrightarrow{PX} (or \overrightarrow{OX}) Accent	-£ /			
		equivalent trigonometric methods (e.g. finding opposite side first and using tangent or Puthagerage					
	M1	M1 Uses the length of and \overrightarrow{PX} (or \overrightarrow{OY}) to find the coordinates of the point on the line					
	A1	at shortest distance from M . Correct point.					
		Correct method for the distance. May be as per main scheme, or u	se of sine ra	atio			
(ii)	M1	with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept equivalent					
		trigonometric methods.					
	AI	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m					
Useful diag	ram:	M (100, 200, 100) Note for P, $\cos \theta = \pm \frac{1}{\sqrt{38}}$	$\frac{57}{3\sqrt{105}}$,				
		$\theta = 25.5^{\circ} \text{ and } \overrightarrow{PX} = 7$	75√38				
	-,						
	θ		$\sqrt{38}$				
(200 4	P	X , $ 0 - 55.00, 2X - 25$	v 50				
(-300, 4)	00, -13	50)					