Question	Scheme	Marks	AOs
10. (a)	a represents the proportion of juvenile chimpanzees that (survive and) remain juvenile chimpanzees the next year.	B1	3.4
		(1)	
(b)(i)	Determinant $=0.82 a-0.08 \times 0.15$	M1	1.1b
	$\left(\begin{array}{cc}a & 0.15 \\ 0.08 & 0.82\end{array}\right)^{-1}=\ldots\left(\begin{array}{cc}0.82 & -0.15 \\ -0.08 & a\end{array}\right)$	M1	1.1b
	$\left(\begin{array}{cc}a & 0.15 \\ 0.08 & 0.82\end{array}\right)^{-1}=\frac{1}{0.82 a-0.012}\left(\begin{array}{cc}0.82 & -0.15 \\ -0.08 & a\end{array}\right)$	A1	1.1b
(ii)		(3)	
	$\begin{array}{r} \left(\begin{array}{cc} a & 0.15 \\ 0.08 & 0.82 \end{array}\right)^{-1}\binom{15360}{43008}=\frac{1}{0.82 a-0.012}\binom{0.82 \times 15360-0.15 \times 43008}{(-0.08) \times 15360+43008 a} \\ \text { OR forms equations } \begin{array}{r} 15360=a J_{0}+0.15 \times A_{0} \\ 43008=0.08 \times J_{0}+0.82 \times A_{0} \end{array} \end{array}$	M1	3.1a
	$\begin{aligned} & \frac{1}{0.82 a-0.012}[6144+(43008 a-1228.8)]=64000 \\ & \Rightarrow 4915.2+43008 a=64000(0.82 a-0.012) \Rightarrow a=\ldots \end{aligned}$ OR $\begin{aligned} & A_{0}=64000-J_{0} \Rightarrow 43008=0.08 \times J_{0}+0.82 \times\left(64000-J_{0}\right)=J_{0}=\ldots \\ & \Rightarrow a=\frac{15360-\left(64000-J_{0}\right)}{J_{0}}=\ldots \end{aligned}$	M1	3.1a
	$a=\frac{5683.2}{9472}=0.60$	A1	1.1b
(iii)		(3)	
	Initial juvenile population $=\frac{\text { " } 6144 "}{\text { "0.48" }}=12800$	M1	3.4
	So change of 2560 juvenile chimpanzees	A1	1.1b
		(2)	
(c)	As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) - but they must have made an attempt at it to find at least a value for J_{0})	B1ft	3.5a
		(1)	
(d)	Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_{n}, and a matrix multiplication of increased dimension set up. Accept $3 \times 3,3 \times 2$ or 2×3 matrices including all three categories in the column vector.	M1	3.5c
	The corresponding matrix model will have the form $\left(\begin{array}{c} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{array}\right)=\left(\begin{array}{ccc} a & b & \underline{\mathbf{0}} \\ 0.08 & c & 0 \\ 0 & d & e \end{array}\right)\left(\begin{array}{c} J_{n} \\ A_{n} \\ M_{n} \end{array}\right)$ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	A1	3.3
		(2)	
	(12 marks)		

Notes

