5.

The complex numbers $z_1 = -2$, $z_2 = -1 + 2i$ and $z_3 = 1 + i$ are plotted in Figure 1, on an Argand diagram for the complex plane with z = x + iy

(a) Explain why z_1 , z_2 and z_3 cannot all be roots of a quartic polynomial equation with real coefficients.

(b) Show that $\arg\left(\frac{z_2-z_1}{z_3-z_1}\right) = \frac{\pi}{4}$

(3) (c) Hence show that $\arctan(2) - \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$ **(2)**

A copy of Figure 1, labelled Diagram 1, is given on page 12.

(d) Shade, on Diagram 1, the set of points of the complex plane that satisfy the inequality

$$|z+2| \leqslant |z-1-i|$$

(2)

(2)

