Question	Scheme			Marks	AOs
1(a)	$\begin{vmatrix} k & 3 & -1 \\ 3 & -1 & 1 \\ -16 & -k & -k \end{vmatrix} = k(k+k) - 3(-3k+16) - 1(-3k-16)$			M1	2.1
	Solves det = $0 \Rightarrow 2k^2 + 12k - 32 = 0$ or $k^2 + 6k - 16 = 0$ To achieve $k = 2$ ($k = -8$ must be rejected)			A1	1.1b
				(2)	
	Special case $\begin{vmatrix} 2 & 3 & -1 \\ 3 & -1 & 1 \\ -16 & -2 & -2 \end{vmatrix} = 2(2+2) - 3(-3 \times 2 + 16) - 1(-3 \times 2 - 16)$ Shows det = 0, therefore when $k = 2$ there is no unique solution			M1 A0	2.1 1.1b
(b)	Eliminates z to achieve two equations in x and y e.g. 5x+2y=1 -10x-4y=-2 20x+8y=4	Eliminates x to achieve two equations in y and z e.g. 11y-5z=13 22y-10z=26 -22y-10z=-26	Eliminates y to achieve two equations in x and z e.g. 11x+2z=-3 22x+4z=-6 -44x-8z=12	M1 A1	3.1a 1.1b
	Must give a reason: e.g. Two equations are a linear multiple of each other e.g. shows they are the same equation therefore the equations are consistent .			A1	2.4
	Alternative Eliminates two different variables to form two equations, should be one equation from two of the three sections in the main scheme. e.g $5x + 2y = 1$ and $11y - 5z = 13$ rearranges and substitutes in to one of the original equations in three variables. e.g. $2x + 3\left(\frac{1-5x}{2}\right) - \left(\frac{-3-11x}{2}\right) = 3$			M1	3.1a
	Correct equations e.g $5x+2y=1$ and $11y-5z=13$			A1	1.1b
	Shows that the equations are a solution e.g. $3 = 3$ therefore consistent			A1	2.4
(c)	The three planes form a sheaf .			B1	2.2a
				(1)	
				(6 marks)	

Notes:

(a)

M1: Finds the determinant of the matrix corresponding to the system of equations.

A1: Sets determinant = 0 and solves their 3TQ to achieve k = 2 (k = -8 must be rejected)

(a) Special case

M1A0: Uses k = 2 and finds the determinant of the matrix corresponding to the system of equations Shows that determinant = 0 and concludes that when k = 2 there is no unique solution

(b)

M1: A complete method eliminating one variable from the equations using two different pairs of equations. Condone if a different value of k is used

A1: Achieves two equations in the same two variables

A1: Must give a reason, shows that the equations are a linear multiple of each other therefore they are consistent.

(b) Alternative

M1: A complete method eliminating one variable from the equations using two different pairs of equations. Substitutes these equations into one of the original equations in three variables.

A1: Achieves two correct equations in two different variables

A1: Shows that the equation works therefore they are **consistent**.

(c)

B1: The three planes form a sheaf. They must have full marks in (b) to award this mark.