Question

Scheme	Marks	AOs
$x^{2}+y^{2}=r^{2}$	B 1	1.2
$\{V\}=\pi \int_{-r}^{r} r^{2}-x^{2} \mathrm{~d} x$ or $\{V\}=2 \pi \int_{0}^{r} r^{2}-x^{2} \mathrm{~d} x$	B 1	2.1
Integrates to the form $\alpha x \pm \beta x^{3}$ $\left[\right.$ note: the correct integration gives $r^{2} x-\frac{1}{3} x^{3}$	M 1	1.1 b
Substitutes limits of $-r$ and r and subtracts the correct way round $\left(r^{2}(r)-\frac{1}{3}(r)^{3}\right)-\left(r^{2}(-r)-\frac{1}{3}(-r)^{3}\right)$	dM 1	1.1 b
Substitutes limits of 0 and r and subtracts the correct way round with		
twice the volume. Note the limit of 0 can be implied if gives and		
answer of 0		
$\left(r^{2}(r)-\frac{1}{3}(r)^{3}\right)-(0)$	$\mathrm{A} 1 *$	1.1 b
$V=\frac{4}{3} \pi r^{3} *$ cso	or	

(5 marks)

Notes:

B1: Correct equation of the circle, may be implied by correct integral
B1: Correct expression for the volume, including limits, $\mathrm{d} x$ may be implied and if using limits r and 0 the 2 could appear later with reasoning
M1: Integrates to the form $\alpha x \pm \beta x^{3}$. Do not award if $r^{2} \rightarrow \lambda r^{3}$
dM1: Dependent on previous method mark. Correct use of limits $-r$ and r or limits of 0 and r with twice the volume.
A1*: $V=\frac{4}{3} \pi r^{3}{ }^{\text {cso }}$
Note: rotation about the \boldsymbol{y}-axis all marks are available, however for the final accuracy mark must refer to symmetry

