Question	Scheme	Marks	AOs
3	$x^2 + y^2 = r^2$	B1	1.2
	${V} = \pi \int_{-r}^{r} r^2 - x^2 dx \text{ or } {V} = 2\pi \int_{0}^{r} r^2 - x^2 dx$	B1	2.1
	Integrates to the form $\alpha x \pm \beta x^3$ [note: the correct integration gives $r^2 x - \frac{1}{3}x^3$]	M1	1.1b
	Substitutes limits of $-r$ and r and subtracts the correct way round $ \left(r^2(r) - \frac{1}{3}(r)^3\right) - \left(r^2(-r) - \frac{1}{3}(-r)^3\right) $ or Substitutes limits of 0 and r and subtracts the correct way round with twice the volume. Note the limit of 0 can be implied if gives and answer of 0 $ \left(r^2(r) - \frac{1}{3}(r)^3\right) - (0) $	dM1	1.1b
	$V = \frac{4}{3}\pi r^3 * \cos$	A1*	1.1b
		(5)	
(5 marks)			narks)
Notes:			
B1: Correct equation of the circle, may be implied by correct integral B1: Correct expression for the volume, including limits, dx may be implied and if using limits r and 0 the 2 could appear later with reasoning M1: Integrates to the form $\alpha x \pm \beta x^3$. Do not award if $r^2 \rightarrow \lambda r^3$ dM1: Dependent on previous method mark. Correct use of limits $-r$ and r or limits of 0 and r with twice the volume.			
A1* : $V = \frac{4}{3}\pi r^3 * \cos \theta$			
Note: rotation about the y-axis all marks are available, however for the final accuracy mark must refer to symmetry			