Question	Scheme				Marks	AOs
4(a)	Finds any two vectors $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$ $\pm \begin{pmatrix} 8\\1\\1 \end{pmatrix}$ or $\pm \begin{pmatrix} 4\\3\\1 \end{pmatrix}$ or $\pm \begin{pmatrix} -4\\2\\0 \end{pmatrix}$ two out of three values correct is sufficient to imply the correct method					3.3
	Applies the vector equation of the plane formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ Where a is any coordinate from L, M & N and vectors b and c come from an attempt at finding any two vectors that lie on the plane.					1.1b
	A correct equation for the plane $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} \text{ or } \begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ $\mathbf{b} \text{ and } \mathbf{c} \text{ are any two vectors from } \pm \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix} \text{ or } \pm \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} \text{ or } \pm \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix}$					1.1b
					(3)	
(b)(i) (ii)	Applies 'their' b . $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ AND 'their' c . $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$	Alternative 1 Finds 'their b ' – 'their c ' or vice versa and applies the dot product with $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ AND one of their b or c	Alternative 2 Applies 'their' b . $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ AND 'their' c . $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and solves to find values of x, y and z	Alternative 3 Applies the dot product between their answer to part (a) and the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$	M1	1.1b
	Show that both dot product(s) = 0 therefore the lawn is perpendicular		Alternative 1 Shows results is parallel to $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ therefore the lawn is perpendicular	Alternative 2 Achieves the value 2 and concludes as a constant therefore the lawn is perpendicul ar	A1	2.4
	Outside Specification for this paper – using the cross product Finds the cross product between 'their b ' and 'their c ' and either				M1	1.1b

	compares with the vector $\begin{pmatrix} 1\\ 2\\ -10 \end{pmatrix}$ to show parallel or applies the dot product formula with the vector $\begin{pmatrix} 1\\ 2\\ 10 \end{pmatrix}$ to show parallel		
	(-10)	A1	2.4
	concludes paraner increase inclusion in perpendicular		2.7
	Attempts $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = \mathbf{a} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ where $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ Allow $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = \mathbf{a} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ for this mark	M1	1.1b
	x + 2y - 10z = 2 or $x + 2y - 10z - 2 = 0$	A1	1.1b
		(4)	
(c)	Finds the vector \overrightarrow{PQ} or \overrightarrow{QP} and uses it as the direction vector in the formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ Two out three values correct is sufficient to imply the correct method		3.3
	$\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ where $\mathbf{a} = \begin{pmatrix} -10 \\ 8 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ 4 \\ 3 \end{pmatrix}$ and $\mathbf{d} = \pm \begin{pmatrix} 16 \\ -4 \\ 1 \end{pmatrix}$	A1	1.1b
		(2)	
(d)	For example: The lawn will not be flat The washing line will not be straight		3.5b
		(1)	
(e)	Applies the distance formula $\frac{ (2\times1)+5\times2+(2.75\times-10)-2 }{\sqrt{1^2+2^2+(-10)^2}}$		3.4
	= 1.71 m or 171 cm	A1	2.2b
		(2)	
(f)	Must have an answer to part (e). Compares their answer to part (e) with 1.5 m and makes an appropriate comment about the model that is consistent with their answer to part (e). If their answer to part (e) is close to 1.5 (e.g. 1.4 to 1.6) they must compare and conclude that the model therefore is good If their answer to part (e) is significantly different to 1.5 they must compare and conclude that the model therefore it is not a good model.	B1ft	3.5a

		(1)					
		(13 m	narks)				
Notes:							
(a)							
M1: Finds a	ny two vectors $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$ by subtracting relevant vectors. Tw	o out three	e				
values correct M1: Applies	ct is sufficient to imply the correct method is the vector equation of the plane formula $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$ where \mathbf{a} is any	point on the	he				
plane and th	e vectors b and c are any two from their $\pm \overrightarrow{LM}$, $\pm \overrightarrow{LN}$ or $\pm \overrightarrow{MN}$						
A1: Any con	rect equation for the plane. Must start with $\mathbf{r} = \dots$						
(b)(i)							
M1: Applies the dot product between their vectors b AND c with the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$							
A1: Shows both dot products = 0 and concludes that the lawn is perpendicular to the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$							
(b)(i) Alterr	native 1						
M1: Applies	s the dot product between their vector $\mathbf{b} - \mathbf{c}$ AND one of their vectors \mathbf{b} or	c with the					
vector $\begin{pmatrix} 1\\2\\-10 \end{pmatrix}$							
A1: Shows both dot products = 0 and concludes that the lawn is perpendicular to the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$							
(b)(i) Alterr	native 2						
M1: Applies	is the dot product between their vectors b and c $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and attempts to find variables	alues of x ,	y and				
Ζ.							
A1: Shows results is parallel to $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ therefore the lawn is perpendicular							
(b)(i) Alternative 3							
M1: Applies the dot product between their answer to part (a) and the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$							
A1: Achieves the value 2 and concludes as a constant therefore the lawn is perpendicular							

(b)(i) Outside Specification for this paper – using the cross product

M1: Finds the cross product between 'their **b**' and 'their **c**' and shows parallel to $\begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}$

A1: Concludes parallel therefore the lawn is perpendicular

(b)(ii)

M1: Applies the formula
$$\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$$
 where $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ and $\mathbf{a} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

A1: Correct Cartesian equation of the plane

Note: If no method is shown then it must be correct to score M1 A1, if incorrect scores M0 A0. Look at part (i) to see if there is any method as long as it if used in (ii)

(c)

M1: Finds the vector \overrightarrow{PQ} or \overrightarrow{QP} and uses it as the direction vector in the formula. $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$. Two out three values correct is sufficient to imply the correct method

A1: A correct equation including $\mathbf{r} = \dots$

(d)

B1: States an acceptable limitation of the model for the lawn or washing line

(e)

M1: Applies the distance formula using the point (2, 5, 2.75) and the normal vector $\begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}$

A1: 1.71 m or 171 cm

(**f**)

B1ft: Compares their answer to part (e) with 1.5 and makes an assessment of the model with a reason with no contradictory statements.