Finds any two vectors $\pm \overrightarrow{L M}, \pm \overrightarrow{L N}$ or $\pm \overrightarrow{M N}$
$\pm\left(\begin{array}{l}8 \\ 1 \\ 1\end{array}\right)$ or $\pm\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right)$ or $\pm\left(\begin{array}{r}-4 \\ 2 \\ 0\end{array}\right)$ two out of three values correct is sufficient \quad M1
to imply the correct method
Applies the vector equation of the plane formula $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$

| Where \mathbf{a} is any coordinate from $\mathrm{L}, \mathrm{M} \& \mathrm{~N}$ and vectors \mathbf{b} and \mathbf{c} come | M1 | 1.1 b |
| :--- | :--- | :--- | :--- | from an attempt at finding any two vectors that lie on the plane.

A correct equation for the plane $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$

$$
\mathbf{a}=\left(\begin{array}{l}
-2 \\
-3 \\
-1
\end{array}\right) \text { or }\left(\begin{array}{c}
6 \\
-2 \\
0
\end{array}\right) \text { or }\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
$$

\mathbf{b} and \mathbf{c} are any two vectors from $\pm\left(\begin{array}{l}8 \\ 1 \\ 1\end{array}\right)$ or $\pm\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right)$ or $\pm\left(\begin{array}{r}-4 \\ 2 \\ 0\end{array}\right)$
(b)(i) Applies
'their'
b. $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$

AND
(ii)
c. $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$

Alternative 1
Finds
'their \mathbf{b} ' - 'their c' or vice versa and applies the dot product with $\binom{1}{2}$ AND one \quad 'their' $\mathbf{c} .\binom{y}{z}$ and solves to find values of x, y and z
-
Alternative 1
Shows results is
parallel to $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
therefore the lawn
is perpendicular

Alternative 2

Applies 'their'
b. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ AND

Alternative 1
Shows results is

Show that both dot product(s) $=\mathbf{0}$ therefore the lawn is perpendicular

Alternative 3
Applies the dot product between their answer to part (a) and the vector
$\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$

Alternative

2
Achieves the value 2 and concludes as a constant therefore the lawn is perpendicul ar

Notes:

(a)

M1: Finds any two vectors $\pm \overrightarrow{L M}, \pm \overrightarrow{L N}$ or $\pm \overrightarrow{M N}$ by subtracting relevant vectors. Two out three values correct is sufficient to imply the correct method
M1: Applies the vector equation of the plane formula $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$ where \mathbf{a} is any point on the plane and the vectors \mathbf{b} and \mathbf{c} are any two from their $\pm \overrightarrow{L M}, \pm \overrightarrow{L N}$ or $\pm \overrightarrow{M N}$
A1: Any correct equation for the plane. Must start with $\mathbf{r}=\ldots$
(b)(i)

M1: Applies the dot product between their vectors \mathbf{b} AND \mathbf{c} with the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Shows both dot products $=0$ and concludes that the lawn is perpendicular to the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
(b)(i) Alternative 1

M1: Applies the dot product between their vector $\mathbf{b}-\mathbf{c}$ AND one of their vectors \mathbf{b} or \mathbf{c} with the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$

A1: Shows both dot products $=0$ and concludes that the lawn is perpendicular to the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
(b)(i) Alternative 2

M1: Applies the dot product between their vectors \mathbf{b} and $\mathbf{c}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and attempts to find values of x, y and Z
A1: Shows results is parallel to $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ therefore the lawn is perpendicular
(b)(i) Alternative 3

M1: Applies the dot product between their answer to part (a) and the vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Achieves the value 2 and concludes as a constant therefore the lawn is perpendicular
(b)(i) Outside Specification for this paper - using the cross product

M1: Finds the cross product between 'their \mathbf{b} ' and 'their \mathbf{c} ' and shows parallel to $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: Concludes parallel therefore the lawn is perpendicular
(b)(ii)

M1: Applies the formula $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$ where $\mathbf{n}=\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right)$ or $\left(\begin{array}{c}6 \\ -2 \\ 0\end{array}\right)$ or $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$
A1: Correct Cartesian equation of the plane
Note: If no method is shown then it must be correct to score M1 A1, if incorrect scores M0 A0. Look at part (i) to see if there is any method as long as it if used in (ii)
(c)

M1: Finds the vector $\overrightarrow{P Q}$ or $\overrightarrow{Q P}$ and uses it as the direction vector in the formula. $\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$. Two out three values correct is sufficient to imply the correct method
A1: A correct equation including $\mathbf{r}=\ldots$
(d)

B1: States an acceptable limitation of the model for the lawn or washing line
(e)

M1: Applies the distance formula using the point $(2,5,2.75)$ and the normal vector $\left(\begin{array}{c}1 \\ 2 \\ -10\end{array}\right)$
A1: 1.71 m or 171 cm
(f)

B1ft: Compares their answer to part (e) with 1.5 and makes an assessment of the model with a reason with no contradictory statements.

