Question	Scheme	Marks	AOs
5(a)	$Volume = r \times (r+1) \times (r+2)$	B1	1.1b
	A complete method for finding the total volume of <i>n</i> blocks and expressing it in sigma notation. This can be implied by later work. $\sum_{r=1}^{n} (r^{3} + 3r^{2} + 2r)$	M1	3.1b
	$V = \frac{1}{4}n^{2}(n+1)^{2} + 3 \times \frac{1}{6}n(n+1)(2n+1) + 2 \times \frac{n}{2}(n+1)$	M1	2.1
	$V = \frac{1}{4}n(n+1)[n(n+1)+2(2n+1)+4]$	dM1	1.1b
	$V = \frac{1}{4}n(n+1)[n^2 + 5n + 6]$ $\Rightarrow V = \frac{1}{4}n(n+1)(n+2)(n+3)*$	A1*	1.1b
		(5)	
(b)	Sets $\frac{1}{4}n(n+1)(n+2)(n+3) = n^4 + 6n^3 - 11710$ $\frac{1}{4}n^4 + \frac{3}{2}n^3 + \frac{11}{4}n^2 + \frac{3}{2}n = n^4 + 6n^3 - 11710$ simplifies $(3n^4 + 18n^3 - 11n^2 - 6n - 46840 = 0)$ and solves $n = \dots$	M1	1.1b
	There are 10 blocks or $n = 10$	A1	3.2a
		(2)	
	(7 marks)		

Notes:

(a)

B1: Correct volume of a block

M1: Expressing the total volume of all *n* blocks as a series in terms of *r*, r^2 and r^3

M1: Substitutes at least one of the standard formulae into their volume.

dM1: Attempts to factorise $\frac{1}{4}n(n+1)$ having used at least one standard formula correctly. Each term must contain a factor of n(n+1)

A1*: Obtains the printed result with no errors seen, no bracketing errors and following from $V = \frac{1}{4}n(n+1)[n^2+5n+6]$ o.e.

Note: Going from $\frac{1}{4}n(n^3+6n^2+11n+6)$ to $\frac{1}{4}n(n+1)(n+2)(n+3)$ with no reasoning shown scores **dM0 A0**

M1: Sets the printed answer $= n^4 + 6n^3 - 11710$, simplifies, collects terms and uses their calculator	
to solve a quartic equation to find a value for <i>n</i> .	
A1: Selects $n = 10$ or states that there are 10 blocks from a correct equation	