5(a) \quad Volume $=r \times(r+1) \times(r+2)$
A complete method for finding the total volume of n blocks and expressing it in sigma notation. This can be implied by later work.

$$
\sum_{r=1}^{n}\left(r^{3}+3 r^{2}+2 r\right)
$$

$$
\begin{equation*}
V=\frac{1}{4} n^{2}(n+1)^{2}+3 \times \frac{1}{6} n(n+1)(2 n+1)+2 \times \frac{n}{2}(n+1) \tag{2}
\end{equation*}
$$

$$
V=\frac{1}{4} n(n+1)[n(n+1)+2(2 n+1)+4]
$$

$$
V=\frac{1}{4} n(n+1)\left[n^{2}+5 n+6\right]
$$

$$
\Rightarrow V=\frac{1}{4} n(n+1)(n+2)(n+3) *
$$

M1: Sets the printed answer $=n^{4}+6 n^{3}-11710$, simplifies, collects terms and uses their calculator to solve a quartic equation to find a value for n.
A1: Selects $n=10$ or states that there are $\mathbf{1 0}$ blocks from a correct equation

