Question	Schen	ne	Marks	AOs
6(i) (a)	Multiplies the matrix A by itself and sets equal to I to form one equation in <i>a</i> only and another equation involving both <i>a</i> and <i>b</i> . $\binom{2}{a-4}\binom{2}{a-4}\binom{2}{b-4} = \binom{1}{0}\binom{2}{1-4} \Rightarrow 4 + a(a-4) = 1$ and either $2a + ab = 0$ or $2(a-4) + b(a-4) = 0$ or $a(a-4) + b^2 = 1$		M1	3.1a
	Solves a 3TQ involving only the constant <i>a</i> . This could come after a value of <i>b</i> is found and this value substituted into an equation involving both <i>a</i> and <i>b</i> $a^2 - 4a + 3 = 0 \Rightarrow (a - 3)(a - 1) = 0 \Rightarrow a =$		dM1	1.1b
	a = 1, a = 3	a = 1, a = 3		11b
	Substitutes a value for <i>a</i> into an equation involving both <i>a</i> and <i>b</i> and solves for <i>b</i> . e.g. $2(1)+(1)b \Rightarrow b =$ $2(1-4)b+(1-4)=0 \Rightarrow b =$ $(1)(1-4)+b^2=1 \Rightarrow b =$	Alternatively uses 2a + ab = 0 a(2+b) = 0 As $a \neq 0$ $2+b = 0 \Rightarrow b =$	dM1	1.1b
	b = -2		A1	1.1b
			(5)	
	AlternativeFinds \mathbf{A}^{-1} in terms of a and b , sets equations. Allow a $\frac{1}{2b-a(a-4)} \begin{pmatrix} b & -a \\ -(a-4) & 2 \end{pmatrix} = \begin{pmatrix} 2 \\ a - a \end{pmatrix}$ One equation from $\frac{b}{2b-a(a-4)} = 2$ One equation from $\frac{-a}{2b-a(a-4)} = 2$ Uses their value of b and their value of the determinant to form and solve a 3TQ involving only the constant a $a^2 - 4a + 3 = 0$	ual to A and attempts to find at a single sign slip $\begin{pmatrix} a \\ 4 \\ b \end{pmatrix}$ $2, \frac{2}{2b - a(a - 4)} = b$	M1	3.1a
	$\Rightarrow (a-3)(a-1) = 0$ $\Rightarrow a = \dots$ a = 1, a	$\Rightarrow (a-3)(a-1) = 0$ $\Rightarrow a = \dots$ $= 3$	A1	1.1b

	$\frac{-a}{2b-a(a-4)} = a$ $\Rightarrow 2b-a(a-4) = -1 \Rightarrow \frac{b}{-1} = 2$ Or $\frac{-(a-4)}{2b-a(a-4)} = a-4$ $\Rightarrow 2b-a(a-4) = -1$ $\Rightarrow \frac{2}{-1} = b$	Substitutes a value for <i>a</i> into an equation to find a value for <i>b</i>	dM1	1.1b
	b = -2		A1	1.1b
	Uses their smallest value of \mathbf{n} and their value for \mathbf{h} to form two			
(b)	Uses their smallest value of a and their value for b to form two equations $\begin{pmatrix} 2 & 'a' \\ 'a-4' & 'b' \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow 2x + ay = x \text{ and } (a-4)x + by = y$ $\begin{pmatrix} 2 & 1 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow 2x + y = x \text{ and } -3x - 2y = y$		M1	3.1a
	$2x + y = x \Rightarrow x + y = 0$ o.e. and $-3x - 2y = y \Rightarrow x + y = 0$ o.e.		M1	1.1b
	x + y = 0 o.e.		A1	2.1
(ii)(a)			B1	1.1b
	Complete method to find a value for <i>p</i> . Need to see an attempt at the determinant and setting equal to 15 divided by their area of <i>T</i> . The resulting 3TQ needs to be solved to find a value of <i>p</i> . Determinant $3p \times p - (-1) \times 2p = \frac{15}{\text{'their area'}} \Rightarrow p = \dots$		M1	3.1a
	$3p^2 + 2p - 5(=0)$		A1	1.1b
	$p=1$ must reject $p=-\frac{5}{3}$		A1	1.1b
			(4)	
(b)	$\begin{pmatrix} 3\\0 \end{pmatrix}$	0 2	B1 B1	1.1b 1.1b
			(2)	
(c)	(their matrix found in part (b)) $\begin{pmatrix} p' \\ -1 \end{pmatrix}$ $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$		M1	1.1b

$\begin{pmatrix} 3 & 6 \\ 2 & -6 \end{pmatrix}$	A1ft	1.1b			
(2 -6)	(2)				
(16 mark					
Notes:					
 (i)(a) M1: Forming two equations, one involving <i>a</i> only and one involving <i>a</i> and <i>b</i> dM1: Dependent on previous mark, solves a 3TQ involving <i>a</i> A1: Correct values for <i>a</i> dM1: Dependent on first method mark Substitutes one of their values of <i>a</i> into an equation involving <i>a</i> and <i>b</i> and solve to find a value for <i>b</i>. Alternatively factorises either 2<i>a</i> + <i>ab</i> = 0 and uses <i>a</i> ≠ 0 to find a value for <i>b</i>. A1: Correct value for <i>b</i> 					
only the constant <i>a</i> . Alternatively if the value of b is found first substitutes their value for <i>b</i> into their determinant = -1 to form and solve a 3TQ for <i>a</i> A1: Correct value for <i>a</i> dM1: Dependent on first method mark. Substitutes a value for <i>a</i> into an equation to find a value for <i>b</i> . Alternatively uses one equation to find the determinant = -1 and uses this to find a value of <i>b</i> . A1: Correct values for <i>b</i>					
 (b) M1: Extracts simultaneous equations using their matrix A with their smaller value of <i>a</i>. M1: Gathers terms from their two equations. A1: Achieves the correct equations and deduces the correct line. Accept equivalent equations as long as both have been shown to be the same. 					
(ii)(a) B1: Area of the triangle $T = 3$ M1: Full method. Finds the determinant, sets equal to 15/their area and solves the resulting 3TQ A1: Correct quadratic A1: $p = 1$ only					
(b) B1 One correct row or column B1: All correct (c)					

M1: Multiplies the matrices **QP** in the correct order (if answer only then evidence can be taken from 3 correct or 3 correct ft elements)

A1ft: Correct matrix following through on their answer to part (b) and their value of p as long as it is a positive constant