Question	Scheme	Marks	AOs
7	$z_2 = 2 - 3i$	B1	1.1b
	$(z_3 =) p - 3i$ and $(z_4 =) p + 3i$ May be seen in an Argand diagram	M1	3.1a
	$(z_3 =) - 4 - 3i$ and $(z_4 =) - 4 + 3i$ May be seen in an Argand diagram, but the complex numbers used in their method takes precedence	A1	1.1b
	$\begin{aligned} & \left(z^2 - 4z + 13\right)\left(z^2 + 8z + 25\right) \\ & \text{or} \\ & \left(z - (2 - 3i)\right)\left(z - (2 + 3i)\right)\left(z - (-4 - 3i)\right)\left(z - (-4 + 3i)\right)\right) \\ & \text{or} \\ & a = -\left[(2 - 3i) + (2 + 3i) + (-4 - 3i) + (-4 + 3i)\right] \\ & \text{and} \\ & b = (2 - 3i)(2 + 3i) + (2 - 3i)(-4 - 3i) + (2 - 3i)(-4 + 3i) \\ & + (2 + 3i)(-4 - 3i) + (2 + 3i)(-4 + 3i) + (-4 - 3i)(-4 + 3i) \\ & \text{and} \\ & c = -\left[\frac{(2 - 3i)(2 + 3i)(-4 - 3i) + (2 - 3i)(2 + 3i)(-4 + 3i)}{(-4 - 3i)(-4 + 3i) + (2 - 3i)(-4 + 3i)(-4 + 3i)}\right] \\ & \text{and} \\ & d = (2 - 3i)(2 + 3i)(-4 - 3i)(-4 + 3i)(-4 + 3i) \\ & \text{or} \\ \\ & \text{Substitutes in one root from each conjugate pair and equates real and imaginary parts and solves simultaneously} \\ & \left(2 \pm 3i\right)^4 + a(2 \pm 3i)^3 + b(2 \pm 3i)^2 + c(2 \pm 3i) + d = 0 \\ & \left(-4 \pm 3i\right)^4 + a(-4 \pm 3i)^3 + b(-4 \pm 3i)^2 + c(-4 \pm 3i) + d = 0 \end{aligned}$	dM1	3.1a
	a = 4, b = 6, c = 4, d = 325	A1	1.1b
	$f(z) = z^4 + 4z^3 + 6z^2 + 4z + 325$	A1	1.1b
		(6)	
(6 marks)			

Notes:

B1: Seen 2 – 3i

M1: Finds the third and fourth roots of the form $p \pm 3i$. May be seen in an Argand diagram

A1: Third and fourth roots are $-4 \pm 3i$. May be seen in an Argand diagram

dM1: Uses an appropriate method to find f(z). If using roots of a polynomial at least 3 coefficients must be attempted.

A1: At least two of *a*, *b*, *c*, *d* correct

A1: All *a*, *b*, *c* and *d* correct

