$z_{2}=2-3 i$
$\left(z_{3}=\right) p-3 i$ and $\left(z_{4}=\right) p+3 i$ May be seen in an Argand diag
$\left(z_{3}=\right)-4-3$ i and $\left(z_{4}=\right)-4+3 i$ May be seen in an Argand
diagram, but the complex numbers used in their method takes
precedence
:---
or
$\qquad(z-(2-3 i))(z-(2+3 i))(z-(-4-3 i))(z-(-4+3 i))$

or $a=-[(2-3 i)+(2+3 i)+(-4-3 i)+(-4+3 i)]$
and

$$
\begin{aligned}
b & =(2-3 i)(2+3 i)+(2-3 i)(-4-3 i)+(2-3 i)(-4+3 i) \\
& +(2+3 i)(-4-3 i)+(2+3 i)(-4+3 i)+(-4-3 i)(-4+3 i)
\end{aligned}
$$

and

$$
c=-\left[\begin{array}{c}
(2-3 i)(2+3 i)(-4-3 i)+(2-3 i)(2+3 i)(-4+3 i) \\
+(2-3 i)(-4-3 i)(-4+3 i)+(2+3 i)(-4-3 i)(-4+3 i)
\end{array}\right]
$$

and

$$
d=(2-3 i)(2+3 i)(-4-3 i)(-4+3 i)
$$

or
Substitutes in one root from each conjugate pair and equates real and imaginary parts and solves simultaneously

$(2 \pm 3 \mathrm{i})^{4}+a(2 \pm 3 \mathrm{i})^{3}+b(2 \pm 3 \mathrm{i})^{2}+c(2 \pm 3 \mathrm{i})+d=0$		
$(-4 \pm 3 \mathrm{i})^{4}+a(-4 \pm 3 \mathrm{i})^{3}+b(-4 \pm 3 \mathrm{i})^{2}+c(-4 \pm 3 \mathrm{i})+d=0$		
$a=4, b=6, c=4, d=325$	A 1	1.1 b
$\mathrm{f}(\mathrm{z})=\mathrm{z}^{4}+4 z^{3}+6 \mathrm{z}^{2}+4 \mathrm{z}+325$	A 1	1.1 b
	(6)	

(6 marks)

Notes:

B1: Seen $2-3 i$
M1: Finds the third and fourth roots of the form $p \pm 3 i$. May be seen in an Argand diagram
A1: Third and fourth roots are -4 ± 3. May be seen in an Argand diagram
dM1: Uses an appropriate method to find $\mathrm{f}(\mathrm{z})$. If using roots of a polynomial at least 3 coefficients must be attempted.
A1: At least two of a, b, c, d correct
A1: All a, b, c and d correct

Note: Using roots $2 \pm 3 i$ and $-2 \pm 3 i$ leads to $z^{4}+10 z^{2}+169$ Maximum score B1 M1 A0 M1 A0

A0

