Question	Scheme	Marks	AOs
8	Way 1: $f(k+1)-f(k)$ When $n-1 = 2^{n+2} + 3^{2n+1} - 2^3 + 3^3 - 35$	B1	2.2a
	Shows the statement is true for $n = 1$, allow 5(7)		
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	$f(k+1) - f(k) = 2^{k+3} + 3^{2k+3} - (2^{k+2} + 3^{2k+1})$	M1	2.1
	$= 2 \times 2^{k+2} + 9 \times 3^{2k+1} - 2^{k+2} - 3^{2k+1}$		
	$=2^{k+2}+8\times 3^{2k+1}$	A1	1.1b
	= f (k) + 7×3 ^{2k+1} or 8f (k) - 7×2 ^{k+2}		
	$f(k+1) = 2f(k) + 7 \times 3^{2k+1} \text{ or } 9f(k) - 7 \times 2^{k+2}$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	
	Way 2: $f(k+1)$		
	When $n = 1$, $2^{n+2} + 3^{2n+1} = 2^3 + 3^3 = 35$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	$f(k+1) = 2^{(k+1)+2} + 3^{2(k+1)+1}$	M1	2.1
	$f(k+1) = 2^{k+3} + 3^{2k+3} = 2 \times 2^{k+2} + 9 \times 3^{2k+1}$		
	$= 2(2^{k+2} + 3^{2k+1}) + 7 \times 3^{2k+1}$	A1	1.1b
	$= 2f(k) + 7 \times 3^{2k+1} \text{ or } 9f(k) - 7 \times 2^{k+2}$	AI	1.10
	If true for $n = k$ then true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	
	Way 3: $\mathbf{f}(\mathbf{k}+1) - \mathbf{m} \mathbf{f}(\mathbf{k})$		
	When $n = 1$, $2^{n+2} + 3^{2n+1} = 2^3 + 3^3 = 35$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	f (k+1)-mf (k) = 2 ^{k+3} + 3 ^{2k+3} - m(2 ^{k+2} + 3 ^{2k+1})	M1	2.1
	$= 2 \times 2^{k+2} + 9 \times 3^{2k+1} - m \times 2^{k+2} - m \times 3^{2k+1}$		
	$= (2-m)2^{k+2} + 9 \times 3^{2k+1} - m \times 3^{2k+1}$	A1	1.1b
	$= (2-m)(2^{k+2}+3^{2k+1})+7\times 3^{2k+1}$		
	$f(k+1) = (2-m)(2^{k+2}+3^{2k+1}) + 7 \times 3^{2k+1} + mf(k)$	A1	1.1b

If true for $n = k$ then true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
	(6)	

(6 marks)

Notes:

Way 1: f(k+1) - f(k)

B1: Shows that f(1) = 35 and concludes or shows divisible by 7. This may be seen in the final statement.

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f(k+1) - f(k)

A1: Achieves a correct expression for f(k+1)-f(k) in terms of f(k)

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks, look out for scoring B1 in this statement. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution.

Way 2:
$$f(k+1)$$

B1: Shows that f(1) = 35 and concludes divisible by 7

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f (k+1)

A1: Correctly obtains either 2f(k) or $7 \times 3^{2^{k+1}}$ or either 9f(k) or $-7 \times 2^{k+2}$

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution.

Way 3:
$$f(k+1) - m f(k)$$

B1: Shows that f(1) = 35 and concludes divisible by 7

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f(k+1) - mf(k)

A1: Achieves a correct expression for f(k+1) - mf(k) in terms of f(k)

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of **all four bold** points either at the end of their solution or as a narrative in their solution.