Question

9(a)
$\alpha \beta \gamma=-\frac{1}{3}$ and $\alpha \beta$
$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+}{\alpha \beta}$
$=4$
$\left\{\left\{\alpha+\beta+\gamma=-\frac{1}{3}\right\}\right.$

New product $=\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma}=\frac{1}{\alpha \beta \gamma}=\frac{1}{-1 / 3}=\ldots(-3)$
New pair sum $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}=\frac{\gamma+\alpha+\beta}{\alpha \beta \gamma}=\frac{-1 / 3}{-1 / 3}=\ldots$ (1)

$x^{3}-($ part $(\mathrm{a})) x^{2}+($ new pair sum $) x-($ new product $)(=0)$	M1	1.1 b
$x^{3}-4 x^{2}+x+3=0$	A1	1.1 b
Alternative	$\mathbf{(3)}$	
e.g. $z=\frac{1}{x} \Rightarrow \frac{3}{x^{3}}+\frac{1}{x^{2}}-\frac{4}{x}+1=0$	M1	3.1a
$x^{3}-4 x^{2}+x+3=0$	M1	1.1 b
	A1	1.1 b
	(3)	

Notes:

(a)

B1: Correct values for the product and pair sum of the roots
M1: A complete method to find the sum of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$. Must substitute in their values of the product and pair sum
A1: correct value 4
Note: If candidate does not divide by 3 so that $\alpha \beta \gamma=-1$ and $\alpha \beta+\alpha \gamma+\beta \gamma=-4$ the maximum they can score is B0 M1 A0
(b)

M1: A correct method to find the value of the new pair sum and the value of the new product
M1: Applies $x^{3}-($ part $(\mathrm{a})) x^{2}+($ their new pair sum $) x-($ their new product $)(=0)$
A1: Fully correct equation, in any variable, including $=0$
(b) Alternative

M1: Realises the connection between the roots and substitutes into the cubic equation M1: Manipulates their equation into the form $x^{3}+a x^{2}+b x+c=0$
A1: Fully correct equation in any variable, including $=0$

