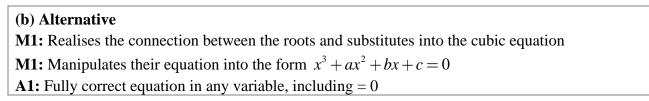
Question	Scheme	Marks	AOs
9(a)	$\alpha\beta\gamma = -\frac{1}{3} \text{ and } \alpha\beta + \alpha\gamma + \beta\gamma = -\frac{4}{3}$	B1	3.1a
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma} = \frac{-\frac{4}{3}}{-\frac{1}{3}}$	M1	1.1b
	=4	A1	1.1b
		(3)	
(b)	$\left\{\alpha + \beta + \gamma = -\frac{1}{3}\right\}$		
	New product $=$ $\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma} = \frac{1}{\alpha\beta\gamma} = \frac{1}{-\frac{1}{3}} =(-3)$ New pair sum $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{-\frac{1}{3}}{-\frac{1}{3}} =(1)$	M1	3.1a
	$x^{3} - (\text{part } (a))x^{2} + (\text{new pair sum})x - (\text{new product})(=0)$	M1	1.1b
	$x^3 - 4x^2 + x + 3 = 0$	A1	1.1b
		(3)	
	Alternative e.g. $z = \frac{1}{x} \Rightarrow \frac{3}{x^3} + \frac{1}{x^2} - \frac{4}{x} + 1 = 0$	M1	3.1a
	$x^3 - 4x^2 + x + 3 = 0$	M1 A1	1.1b 1.1b
		(3)	
	(6 marks)		

Notes:

(a)


B1: Correct values for the product and pair sum of the roots

M1: A complete method to find the sum of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. Must substitute in their values of the product and pair sum A1: correct value 4 Note: If candidate does not divide by 3 so that $\alpha\beta\gamma = -1$ and $\alpha\beta + \alpha\gamma + \beta\gamma = -4$ the maximum they can score is B0 M1 A0 (b)

M1: A correct method to find the value of the new pair sum and the value of the new product

M1: Applies $x^3 - (\text{part } (a))x^2 + (\text{their new pair sum})x - (\text{their new product})(=0)$

A1: Fully correct equation, in any variable, including = 0

