Question	Scheme	Marks	AOs
2	$w = 3x - 2 \Longrightarrow x = \frac{w + 2}{3}$	B1	3.1a
	$9\left(\frac{w+2}{3}\right)^3 - 5\left(\frac{w+2}{3}\right)^2 + 4\left(\frac{w+2}{3}\right) + 7 = 0$	M1	3.1a
	$\frac{1}{3}\left(w^{3}+6w^{2}+12w+8\right)-\frac{5}{9}\left(w^{2}+4w+4\right)+\frac{4}{3}\left(w+2\right)+7=0$		
		dM1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		A1	1.1b
		(5)	
	Alternative:		
	$\alpha + \beta + \gamma = \frac{5}{9}, \alpha \beta + \beta \gamma + \alpha \gamma = \frac{4}{9}, \alpha \beta \gamma = -\frac{7}{9}$	B1	3.1a
	New sum = $3(\alpha + \beta + \gamma) - 6 = -\frac{13}{3}$		
	New pair sum = $9(\alpha\beta + \beta\gamma + \gamma\alpha) - 12(\alpha + \beta + \gamma) + 12 = \frac{28}{3}$	M1	3.1a
	New product = $27\alpha\beta\gamma - 18(\alpha\beta + \beta\gamma + \gamma\alpha) + 12(\alpha + \beta + \gamma) - 8 = -\frac{91}{3}$		
	$w^{3} - \left(-\frac{13}{3}\right)w^{2} + \frac{28}{3}w - \left(-\frac{91}{3}\right) = 0$	dM1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		A1	1.1b
		(5)	
	(5 mar		
Notes			

B1: Selects the method of making a connection between x and w by writing $x = \frac{w+2}{3}$

Condone the use of a different letter than w

M1: Applies the process of substituting $x = \frac{w+2}{3}$ into $9x^3 - 5x^2 + 4x + 7 = 0$

dM1: Depends on the previous M mark. Manipulates their equation into the form $aw^3 + bw^2 + cw + d(=0)$. Condone the use of a different letter then *w* consistent with B1 mark.

A1: At least two of *a*, *b*, *c*, *d* correct

A1: Fully correct equation, must be in terms of w

Alternative:

B1: Selects the method of giving three correct equations containing α , β and γ

M1: Applies the process of finding the new sum, new pair sum, new product

dM1: Depends on the previous M mark. Applies

 $w^{3} - (\text{new sum})w^{2} + (\text{new pair sum})w - (\text{new product})(=0)$ condone the use of any letter here.

A1: At least two of *a*, *b*, *c*, *d* correct

A1: Fully correct equation in term of *w*