Question	Scheme	Marks	AOs
3(a)	$(5 r-2)^{2}=25 r^{2}-20 r+4$	B1	1.1b
	$\sum_{r=1}^{n} 25 r^{2}-20 r+4=\frac{25}{6} n(n+1)(2 n+1)-\frac{20}{2} n(n+1)+\ldots$	M1	2.1
	$=\frac{25}{6} n(n+1)(2 n+1)-\frac{20}{2} n(n+1)+4 n$	A1	1.1b
	$=\frac{1}{6} n\left[25\left(2 n^{2}+3 n+1\right)-60(n+1)+24\right]$	dM1	1.1b
	$=\frac{1}{6} n\left[50 n^{2}+15 n-11\right]$	A1	1.1b
		(5)	
(b)	$\frac{1}{6} k\left[50 k^{2}+15 k-11\right]=94 k^{2}$	M1	1.1b
	$50 k^{3}-549 k^{2}-11 k=0$ or $50 k^{2}-549 k-11=0$	A1	1.1b
	$(k-11)(50 k+1)=0 \Rightarrow k=\ldots$	M1	1.1b
	$k=11$ (only)	A1	2.3
		(4)	
(9 marks)			
	Notes		

(a)

B1: Correct expansion
M1: Substitutes at least one of the standard formulae into their expanded expression
A1: Fully correct expression
dM1: Attempts to factorise $\frac{1}{6} n$ having used at least one standard formula correctly. Dependent on the first M mark.
A1: Obtains the correct expression or the correct values of a, b and c
(b)

M1: Uses their result from part (a) and sets equal to $94 k^{2}$ and attempt to expand and collect terms.
A1: Correct cubic or quadratic
M1: Attempts to solve their 3TQ or cubic equation
A1: Identifies the correct value of k with no other values offered

