Question	Scheme	Marks	AOs
6(a)	$\left(\pm k\overrightarrow{AB} = \pm k\left(5\mathbf{i} + 25\mathbf{j} + 5\mathbf{k}\right)\right),$		
	Any two of: $\left\{ \pm k \overrightarrow{AC} = \pm k \left(-15\mathbf{i} + 15\mathbf{j} - 10\mathbf{k} \right) \right\}$	M1	3.3
	$\pm k \overrightarrow{BC} = \pm k \left(-20\mathbf{i} - 10\mathbf{j} - 15\mathbf{k}\right)$		
	Let normal vector be $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$		
	$(a\mathbf{i}+b\mathbf{j}+c\mathbf{k}) \bullet (\mathbf{i}+5\mathbf{j}+\mathbf{k}) = 0, \ (a\mathbf{i}+b\mathbf{j}+c\mathbf{k}) \bullet (-3\mathbf{i}+3\mathbf{j}-2\mathbf{k}) = 0$		
	$\Rightarrow a+5b+c=0, -3a+3b-2c=0 \Rightarrow a=, b=, c=$	M1	1.1b
	Alternative: cross product		
	$\begin{vmatrix} 1 & 5 & 1 \\ -3 & 3 & -2 \end{vmatrix} = (-10-3)\mathbf{i} - (-2+3)\mathbf{j} + (3+15)\mathbf{k}$		
	$\mathbf{n} = k\left(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}\right)$	A1	1.1b
	$(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}) \bullet (10\mathbf{i} + 5\mathbf{j} - 50\mathbf{k}) = \dots$	M1	1.1b
	$\mathbf{r}_{\bullet}(13\mathbf{i} + \mathbf{j} - 18\mathbf{k}) = 1035$ o.e. $\mathbf{r}_{\bullet}(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}) = -1035$	A 1	25
	$\mathbf{r} \bullet (325\mathbf{i} + 25\mathbf{j} - 450\mathbf{k}) = 25875$	A1	2.5
		(5)	
(b)	Attempts the scalar product between their normal vector and the vector k and uses trigonometry to find an angle	M1	3.1b
	$(-13\mathbf{i} - \mathbf{j} + 18\mathbf{k}) \bullet \mathbf{k} = -18 = \sqrt{13^2 + 1^2 + 18^2} \cos \alpha$	M1	1.1b
	$\cos \alpha = \frac{-18}{\sqrt{494}} \Rightarrow \alpha = 144.08 \Rightarrow \theta = 36^{\circ}$	A1	3.2a
		(3)	
(c)	Distance required is $ \lambda $ where $\begin{pmatrix} 13\\1\\-18 \end{pmatrix} \bullet \begin{pmatrix} 5\\12\\\lambda \end{pmatrix} = 1035$	M1	3.4
	$ \lambda = 53.2 \mathrm{m}$	A1	1.1b
		(2)	
(d)	 E.g. The mineral layer will not be perfectly flat/smooth and will not form a plane The mineral layer will have a depth and this should be taken into account 	B1	3.5b

	(1)			
(11 marks)				
Notes				
(a)				
M1: Attempts to find at least 2 vectors in the plane that can be used to set up the model. Two correct value implies the correct method if not explicitly seen.				
M1: Attempts a normal vector using an appropriate method. E.g. as in main scheme or may use vector product				
A1: A correct normal vector				
M1: Applies $\mathbf{r.n} = d$ with their normal vector and a point in the plane to find a value for d A1: Correct equation (allow any multiple) (b)				
M1: Realises the scalar product between their from part (a) and a vector parallel to \mathbf{k} and so applies it and uses trigonometry to find an angle				
M1: Forms the scalar product between their from part (a) and a vector parallel to \mathbf{k}				
A1: Correct angle				
(c)				
M1: Uses the model and a correct strategy to establish the distance from (5, 12, 0) to the plane vertically downwards				

A1: Correct distance

(d)

B1: Any reasonable limitation – see scheme