Question	Scheme	Marks	AOs
6(a)	Any two of: $\left\{\begin{array}{l} \pm k \overrightarrow{A B}= \pm k(5 \mathbf{i}+25 \mathbf{j}+5 \mathbf{k}), \\ \pm k \overrightarrow{A C}= \pm k(-15 \mathbf{i}+15 \mathbf{j}-10 \mathbf{k}), \\ \pm k \overrightarrow{B C}= \pm k(-20 \mathbf{i}-10 \mathbf{j}-15 \mathbf{k})\end{array}\right.$	M1	3.3
	Let normal vector be $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ $\begin{aligned} & (a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \bullet(\mathbf{i}+5 \mathbf{j}+\mathbf{k})=0,(a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \bullet(-3 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k})=0 \\ & \quad \Rightarrow a+5 b+c=0,-3 a+3 b-2 c=0 \Rightarrow a=\ldots, b=\ldots, c=\ldots \end{aligned}$ Alternative: cross product $\left\|\begin{array}{ccc} 1 & 5 & 1 \\ -3 & 3 & -2 \end{array}\right\|=(-10-3) \mathbf{i}-(-2+3) \mathbf{j}+(3+15) \mathbf{k}$	M1	1.1b
	$\mathbf{n}=k(-13 \mathbf{i}-\mathbf{j}+18 \mathbf{k})$	A1	1.1b
	$(-13 \mathbf{i}-\mathbf{j}+18 \mathbf{k}) \bullet(10 \mathbf{i}+5 \mathbf{j}-50 \mathbf{k})=\ldots$	M1	1.1b
	$\begin{gathered} r_{\bullet}(13 \mathbf{i}+\mathbf{j}-18 \mathbf{k})=1035 \text { o.e. } r_{\bullet}(-13 \mathbf{i}-\mathbf{j}+18 \mathbf{k})=-1035 \\ r_{\bullet}(325 \mathbf{i}+25 \mathbf{j}-450 \mathbf{k})=25875 \end{gathered}$	A1	2.5
		(5)	
(b)	Attempts the scalar product between their normal vector and the vector \mathbf{k} and uses trigonometry to find an angle	M1	3.1b
	$(-13 \mathbf{i}-\mathbf{j}+18 \mathbf{k}) \cdot \mathbf{k}=-18=\sqrt{13^{2}+1^{2}+18^{2}} \cos \alpha$	M1	1.1b
	$\cos \alpha=\frac{-18}{\sqrt{494}} \Rightarrow \alpha=144.08 \ldots \Rightarrow \theta=36^{\circ}$	A1	3.2a
		(3)	
(c)	Distance required is $\|\lambda\|$ where $\left(\begin{array}{r} 13 \\ 1 \\ -18 \end{array}\right) \cdot\left(\begin{array}{c} 5 \\ 12 \\ \lambda \end{array}\right)=1035$	M1	3.4
	$\|\lambda\|=53.2 \mathrm{~m}$	A1	1.1b
		(2)	
(d)	E.g. - The mineral layer will not be perfectly flat/smooth and will not form a plane - The mineral layer will have a depth and this should be taken into account	B1	3.5b

Notes

(a)

M1: Attempts to find at least 2 vectors in the plane that can be used to set up the model. Two correct value implies the correct method if not explicitly seen.
M1: Attempts a normal vector using an appropriate method. E.g. as in main scheme or may use vector product
A1: A correct normal vector
M1: Applies r.n $=d$ with their normal vector and a point in the plane to find a value for d
A1: Correct equation (allow any multiple)
(b)

M1: Realises the scalar product between their from part (a) and a vector parallel to \mathbf{k} and so applies it and uses trigonometry to find an angle
M1: Forms the scalar product between their from part (a) and a vector parallel to \mathbf{k}
A1: Correct angle
(c)

M1: Uses the model and a correct strategy to establish the distance from $(5,12,0)$ to the plane vertically downwards
A1: Correct distance
(d)

B1: Any reasonable limitation - see scheme

