Question	Scheme	Marks	AOs
7(a)(i)	2 – i	B1	1.2
(ii)	Roots of polynomials with real coefficients occur in conjugate pairs, β and γ form a conjugate pair, α is real so δ must also be real. or Quartics have either 4 real roots, 2 real roots and 2 complex roots or 4 complex roots. As 2 complex roots and 1 real root therefore so δ must also be real. or As α real and only one root δ remaining, if complex it would need to have a complex conjugate, which it can't have so must be real	B1	2.4
		(2)	
(b)	$\alpha + \beta + \gamma + \delta = 6$ $\Rightarrow 3 + 2 + i + 2 - i + \delta = 6 \Rightarrow \delta = \dots$	M1	3.1a
	$\delta = -1$	A1	1.1b
(c)		(2)	
	$f(z) = (z-3)(z+1)(z-(2+i))(z-(2-i)) =$ Alternative $pair sum = (3)(2+i)+(3)(2-i)+(3)(-1)+(-1)(2+i)$ $+(-1)(2-i)+(2+i)(2-i) =\{10\}$ $triple sum = (3)(2+i)(2-i)+(3)(-1)(2+i)$ $+(3)(-1)(2-i)+(-1)(2+i)(2-i) =\{-2\}$ $product = (3)(2+i)(2-i)(-1) =\{-15\}$	M1	3.1a
	$= (z^{2} - 2z - 3)(z^{2} - 4z + 5)$ $= z^{4} - 6z^{3} + 10z^{2} + 2z - 15$ $p = 10, q = 2, r = -15$	A1 A1	1.1b 1.1b
		(3)	
(d)	$z = \frac{1}{2}, -\frac{3}{2}$	B1ft	1.1b
	$z = -1 \pm \frac{i}{2}$	B1ft	1.1b
		(2)	
Notes (9 marks)			
(a)(i) B1: Correct complex number (a)(ii) B1: Correct explanation. (b) M1: Uses $2 \pm i$ and 1 together with the sum of roots $= \pm 6$ to find a value for δ A1: Correct value (c)			

M1: Uses (z-3) and $(z-\text{their }\delta)$ and their conjugate pair correctly as factors and makes an attempt to expand Alternatively attempts to find the pair sum, triple sum and product

(d) B1ft: For $-\frac{3}{2}$ and $-\frac{\delta}{2}$ as the real roots

B1ft: For
$$-1 - \frac{i}{2}$$
 and $-\frac{\gamma}{2}$ as the complex roots