Question	Scheme	Marks	AOs
8(a)	$\begin{gathered} n=1, \quad \text { lhs }=1(2)(3)=6, \quad \text { rhs }=\frac{1}{2}(1)(2)^{2}(3)=6 \\ \text { (true for } n=1) \end{gathered}$	B1	2.2a
	Assume true for $n=k$ so $\sum_{r=1}^{k} r(r+1)(2 r+1)=\frac{1}{2} k(k+1)^{2}(k+2)$	M1	2.4
	$\sum_{r=1}^{k+1} r(r+1)(2 r+1)=\frac{1}{2} k(k+1)^{2}(k+2)+(k+1)(k+2)(2 k+3)$	M1	2.1
	$=\frac{1}{2}(k+1)(k+2)[k(k+1)+2(2 k+3)]$	dM1	1.1b
	$=\frac{1}{2}(k+1)(k+2)\left[k^{2}+5 k+6\right]=\frac{1}{2}(k+1)(k+2)(k+2)(k+3)$ Shows that $=\frac{1}{2}(\underline{k+1})(\underline{k+1}+1)^{2}(\underline{k+1}+2)$ Alternatively shows that $\begin{aligned} \sum_{r=1}^{k+1} r(r+1)(2 r+1) & =\frac{1}{2}(k+1)(k+1+1)^{2}(k+1+2) \\ & =\frac{1}{2}(k+1)(k+2)^{2}(k+3) \end{aligned}$ Compares with their summation and concludes true for $n=k+1$, may be seen in the conclusion.	A1	1.1b
	If the statement is true for $\boldsymbol{n}=\boldsymbol{k}$ then it has been shown true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$ and as it is true for $\boldsymbol{n}=\mathbf{1}$, the statement is true for all positive integers n.	A1	2.4
		(6)	
(b)	$\sum_{r=n}^{2 n} r(r+1)(2 r+1)=\frac{1}{2}(2 n)(2 n+1)^{2}(2 n+2)-\frac{1}{2}(n-1) n^{2}(n+1)$	M1	3.1a
	$=\frac{1}{2} n(n+1)\left[4(2 n+1)^{2}-n(n-1)\right]$	M1	1.1b
	$\begin{aligned} & =\frac{1}{2} n(n+1)\left(15 n^{2}+17 n+4\right) \\ & =\frac{1}{2} n(n+1)(3 n+1)(5 n+4) \end{aligned}$	A1	1.1b
		(3)	
(9 marks)			

Notes

(a) Note ePen B1 M1 M1 A1 A1 A1

B1: Substitutes $n=1$ into both sides to show that they are both equal to 6 . (There is no need to state true for $n=1$ for this mark)
M1: Makes a statement that assumes the result is true for some value of n, say k
M1: Adds the $(k+1)$ th term to the assumed result
dM 1 : Dependent on previous M, factorises out $\frac{1}{2}(k+1)(k+2)$
A1: Reaches a correct the required expression no errors and shows that this is the correct sum for $n=k+1$
A1: Depends on all except \mathbf{B} mark being scored (must have been some attempt to show true for n $=1$). Correct conclusion conveying all the points in bold.
(b)

M1: Realises that $\sum_{r=1}^{2 n} r(r+1)(2 r+1)-\sum_{r=1}^{n-1} r(r+1)(2 r+1)$ is required and uses the result from part (a) to obtain the required sum in terms of n
M1: Attempts to factorise by $\frac{1}{2} n(n+1)$
A1: Correct expression or correct values

