Question	Scheme	Marks	AOs
8(a)	<i>n</i> =1, lhs=1(2)(3)=6, rhs= $\frac{1}{2}(1)(2)^2(3)=6$ (true for <i>n</i> = 1)	B1	2.2a
	Assume true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^{2}(k+2)$	M1	2.4
	$\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^2(k+2) + (k+1)(k+2)(2k+3)$	M1	2.1
	$=\frac{1}{2}(k+1)(k+2)[k(k+1)+2(2k+3)]$	dM1	1.1b
	$=\frac{1}{2}(k+1)(k+2)[k^{2}+5k+6] = \frac{1}{2}(k+1)(k+2)(k+2)(k+3)$		
	Shows that $=\frac{1}{2}(\underline{k+1})(\underline{k+1}+1)^{2}(\underline{k+1}+2)$ Alternatively shows that		
	$\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}(k+1)(k+1+1)^2(k+1+2)$	A1	1.1b
	$=\frac{1}{2}(k+1)(k+2)^{2}(k+3)$		
	Compares with their summation and concludes true for $n = k + 1$, may be seen in the conclusion.		
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(6)	
(b)	$\sum_{r=n}^{2n} r(r+1)(2r+1) = \frac{1}{2}(2n)(2n+1)^2(2n+2) - \frac{1}{2}(n-1)n^2(n+1)$	M1	3.1a
	$= \frac{1}{2}n(n+1)\left[4(2n+1)^{2} - n(n-1)\right]$	M1	1.1b
	$=\frac{1}{2}n(n+1)(15n^2+17n+4)$	Δ 1	1 1b
	$=\frac{1}{2}n(n+1)(3n+1)(5n+4)$		1.10
		(3)	
(9 marks)			

Notes

(a) Note ePen B1 M1 M1 A1 A1 A1

B1: Substitutes n = 1 into both sides to show that they are both equal to 6. (There is no need to state true for n = 1 for this mark)

M1: Makes a statement that assumes the result is true for some value of n, say k

M1: Adds the (k + 1)th term to the assumed result

dM1: Dependent on previous M, factorises out $\frac{1}{2}(k+1)(k+2)$

A1: Reaches a correct the required expression no errors and shows that this is the correct sum for n = k + 1

A1: Depends on all except **B** mark being scored (must have been some attempt to show true for n = 1). Correct conclusion conveying all the points in bold. (b)

M1: Realises that $\sum_{r=1}^{2n} r(r+1)(2r+1) - \sum_{r=1}^{n-1} r(r+1)(2r+1)$ is required and uses the result from

part (a) to obtain the required sum in terms of n

M1: Attempts to factorise by $\frac{1}{2}n(n+1)$

A1: Correct expression or correct values