Question	Scheme	Marks	AOs
9(a)	$(5, 15) \Rightarrow 15 = \frac{\sqrt{225 \times 5^2 - 2025}}{a} \Rightarrow a = \dots$	M1	3.3
	<i>a</i> = 4	A1	1.1b
		(2)	
(b)	Evidence of the use of $\pi \int x^2 dy$ for the curve <i>BC</i> or the curve <i>CD</i>	M1	3.1b
	For BC $V_1 = \frac{\pi}{225} \int (16y^2 + 2025) dy$ or $\pi \int \left(\frac{16}{225}y^2 + 9\right) dy$	A1ft	1.1b
	For <i>CD</i> $V_2 = 25\pi \int (16 - y) dy$ or $\pi \int (400 - 25y) dy$	A1	1.1b
	$V_1 = \frac{\pi}{225} \int_0^{15} \left(16y^2 + 2025 \right) dy \text{ or } \pi \int_0^{15} \left(\frac{16}{225} y^2 + 9 \right) dy$	M1	3.3
	$V_2 = 25\pi \int_{15}^{16} (16 - y) dy$ or $\pi \int_{15}^{16} (400 - 25y) dy$	M1	3.3
	$V_{1} = \frac{\{\pi\}}{225} \left[\frac{16y^{3}}{3} + 2025y \right]_{0}^{15} \text{ or } \{\pi\} \left[\frac{16y^{3}}{675} + 9y \right]_{0}^{15}$	A1ft	1.1b
	$V_2 = 25 \{\pi\} \left[16y - \frac{y^2}{2} \right]_{15}^{16} \text{ or } \{\pi\} \left[400y - \frac{25y^2}{2} \right]_{15}^{16}$	A1ft	1.1b
	$V = V_1 + V_2 = \frac{\pi}{225} \left(18000 + 30375 \right) + 25\pi \left(128 - \frac{255}{2} \right)$	M1	3.4
	$V = V_1 + V_2 = 215\pi + 12.5\pi$		
	$V = \frac{455\pi}{2} \mathrm{c}\mathrm{m}^3 \mathrm{or} 227.5\pi\mathrm{c}\mathrm{m}^3$	A1	2.2b
		(9)	

(c)	E.g.				
	 The equation of the curve may not be a suitable model The sides of the candle will not be perfectly curved/smooth 	B1	3.5b		
	• There will be a whole in the middle for the wick	(1)			
(4)		(1)			
(u)	Makes an appropriate comment that is consistent with their value for the volume and 700 cm ³ . E.g. a good estimate as 700 cm ³ is only 15 cm ³ less than 715 cm ³	B1ft	3.5a		
		(1)			
		(1	3 marks)		
	Notes				
(a) M1: Substitutes (5, 15) into the equation modelling the curve in an attempt to find the value of <i>a</i> A1: Infers from the data in the model, the value of <i>a</i> (b) M1: Uses either model to obtain x^2 in terms of <i>y</i> and applies $\pi \int x^2 dy$ Alft: Correct expression for the volume generated by the curve <i>BC</i> (follow through their <i>a</i> value) A1: Correct expression for the volume generated by the curve <i>BC</i> M1: Chooses limits appropriate to their model for the curve <i>BC</i> M1: Chooses limits appropriate to their model for the curve <i>CD</i> A1ft: Correct integration (follow through their <i>a</i> value) A1ft: Correct integration follow through on their volume as long it is of the form $Ay - By^2$ M1: Uses the model to find the sum of volumes A1: $\frac{455\pi}{2}$ Note: Use of calculator for integration maximum score M1 A1ft A1 M1 M1 A0ft A0ft M1 A1 (c) B1: States an acceptable limitation of the model (d)					
BIII: Compares the actual volume to their answer to part (b) and makes an assessment of the model with a reason.					