

Finds the length $A W=\sqrt{(4 \sqrt{3}-0)^{2}+(-4--10)^{2}}=\ldots\{\sqrt{84}\}$
Finds the angle between the horizontal and the line $A W$
$=\tan ^{-1}\left(\frac{-4--10}{4 \sqrt{3}}\right)=\ldots\{0.7137 \ldots$ radians or 40.89... $\}$
Finds the length of $W X=\sqrt{84} \times \sin \left(\frac{\pi}{3}-0.7137\right)=\ldots$
Or $=\sqrt{84} \times \sin (60-40.89)=\ldots$
So min distance is 3
Alternative 3
Vector equation of the half line $r=\binom{0}{-10}+\lambda\binom{1}{\sqrt{3}}$
$X W=\binom{4 \sqrt{3}-\lambda}{-4-\lambda \sqrt{3}-(-10)}$
Then either

$$
\begin{aligned}
& \binom{4 \sqrt{3}-\lambda}{6-\lambda \sqrt{3}} \cdot\binom{1}{\sqrt{3}}=4 \sqrt{3}-\lambda+6 \sqrt{3}-3 \lambda=0 \Rightarrow \lambda=\ldots\left\{\frac{5}{2} \sqrt{3}\right\} \\
& r=\binom{0}{-10}+\frac{5}{2} \sqrt{3}\binom{1}{\sqrt{3}}=\ldots \\
& \text { Or } X W^{2}=(4 \sqrt{3}-\lambda)^{2}+(6-\lambda \sqrt{3})^{2}=48-8 \lambda \sqrt{3}+\lambda^{2}+36-12 \lambda \sqrt{3}+3 \lambda^{2} \\
& x w^{2}=84-20 \lambda \sqrt{3}+4 \lambda^{2} \text { leading to } \\
& \frac{\mathrm{d}\left(X W^{2}\right)}{\mathrm{d} \lambda}=-20 \sqrt{3}+8 \lambda=0 \Rightarrow \lambda=\ldots
\end{aligned}
$$

Finds the length $W X \sqrt{\left(4 \sqrt{3}-\frac{5 \sqrt{3}}{2}\right)^{2}+\left(-4--\frac{5}{2}\right)^{2}}$
Or $X W=\sqrt{\left(4 \sqrt{3}-\frac{5}{2} \sqrt{3} '\right)^{2}+\left(6-\frac{5}{2} \sqrt{3} \cdot \sqrt{3}\right)^{2}}$
So min distance is 3

Notes:

(a)

B1: Correct modulus
M1: Attempts the argument. Allow for $\arctan \left(\frac{ \pm 4}{ \pm 4 \sqrt{3}}\right)$ or equivalents using the modulus (may be in wrong quadrant for this mark).
A1: Correct argument $-\frac{\pi}{6}$ (must be in fourth quadrant but accept $\frac{11 \pi}{6}$ or other difference of 2π for this mark).

A1: Correct expression found for w, in the correct form, must have positive $r=8$ and $\theta=-\frac{\pi}{6}$.
Note: using degrees B1 M1 A0 A0
(b)(i)\&(ii)

B1: w plotted in correct quadrant with either the correct coordinate clearly seen or above the line $y=-x$
M1: Half line drawn starting on the imaginary axis away from O with positive gradient (need not be labelled)
A1: Sketch on one diagram- both previous marks must have been scored and the half line should pass between O and w starting from a point on the imaginary axis below w. (You may assume it starts at -10 i unless otherwise stated by the candidate)
Note: If candidates draw the loci on separate diagrams the maximum they can score is B1 M1 A0
(c)

M1: Formulates a correct strategy to find the shortest distance, e.g. uses right angle $O X A$ where X is where the lines meet and proceeds at least as far as $O X$.
M1: Full method to achieve the shortest distance, e.g. for $W X=O W-O X$.
A1: cao shortest distance is 3

Alternative 1:

M1: Uses a correct method to find the equation of the line from O to $w, y=-\frac{1}{\sqrt{3}} x$ and the equation of the half line $y=\sqrt{3} x-10$, solves to find the point of intersection $X\left(\frac{5 \sqrt{3}}{2},-\frac{5}{2}\right)$
If the incorrect gradient(s) is used with no valid method seen this is M0
M1: Finds the length $W X=\sqrt{\left(\text { their } \frac{5 \sqrt{3}}{2}-4 \sqrt{3}\right)^{2}+\left(\text { their }-\frac{5}{2}--4\right)^{2}}=\ldots$ condone a sign slip in the brackets.
A1: cao shortest distance is 3

Alternative 2:

M1: Uses a correct method to find the length $A W$ and a correct method to find the angle between the horizontal and the line $A W$
M1: Finds the length of $W X=$ their $\sqrt{84} \times \sin \left(\frac{\pi}{3}-\right.$ their 0.7137$)=\ldots$
A1: cao shortest distance is 3

Alternative 3

M1: Finds the vector equation of the half line, then $X W$.
Then either: Sets dot product $X W$ and the line $=0$ and solves for λ. Substitutes their λ into the equation of the half line to find the point of intersection.
Or finds the length of $X W$ and differentiates, set $=0$ and solve for λ
M1: Finds the length $W X=\sqrt{\left(\text { their } \frac{5 \sqrt{3}}{2}-4 \sqrt{3}\right)^{2}+\left(\text { their }-\frac{5}{2}--4\right)^{2}}=\ldots$ condone a sign slip in the brackets.
Or substitutes their value for λ into the length of (d)

