Question	Scheme			Marks	AOs
2(a)	$ w = \sqrt{(4\sqrt{3})^2 + (-4)^2} = 8$			B1	1.1b
	$\arg w = \arctan\left(\frac{\pm 4}{4\sqrt{3}}\right) = \arctan\left(\pm\frac{1}{\sqrt{3}}\right)$			M1	1.1b
	$=-\frac{\pi}{6}$			A1	1.1b
	So $(w=)8\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)$			A1	1.1b
				(4)	
(b)	$y \blacktriangle$ arg (z	$+10i) = \frac{\pi}{3}$	(i) w in 4 th quadrant with either $(4\sqrt{3}, -4)$ seen or $-\frac{\pi}{4} < \arg w < 0$	B1	1.1b
	<i>x</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i> <i>w</i>		(ii) half line with positive gradient emanating from imaginary axis.	M1	1.1b
			The half line should pass between <i>O</i> and <i>w</i> starting from a point on the imaginary axis below <i>w</i>	A1	1.1b
				(3)	
(c)		ΔOAX is right angled at X so $OX = 10 \sin \frac{\pi}{6} = 5$ (oe)		M1	3.1a
	$\frac{O}{\frac{\pi}{3}}$	So shortest distance is WX = OW - OX = `8' - 5 =		M1	1.1b
	3 w $A\circ$	So min distance is 3		A1	1.1b
	Alternative 1	A complete method to find the coordinates of <i>X</i> . Finds the equation			
	of the line f		from O to w, $y = -\frac{1}{\sqrt{3}}x$		
	0	_	uation of the half line -10, solves to find the	M1	3.1a
	$\frac{\pi}{3}$ X w	point of intersection $X\left(\frac{5\sqrt{3}}{2}, -\frac{5}{2}\right)$			
	AČ	Finds the length <i>WX</i>			
		$\sqrt{4\sqrt{3}-4}$	$\left(\frac{5\sqrt{3}}{2}\right)^2 + \left(-4\frac{5}{2}\right)^2$	M1	1.1b
	So min distance is 3			A1	1.1b
	Alternative 2			M1	3.1a

Finds the length $AW = \sqrt{(4\sqrt{3}-0)^2 + (-4-10)^2} = \{\sqrt{84}\}$					
Finds the angle between the horizontal and the line AW					
$= \tan^{-1} \left(\frac{-410}{4\sqrt{3}} \right) = \dots \left\{ 0.7137 \dots \text{radians or } 40.89 \dots^{\circ} \right\}$					
Finds the length of $WX = \sqrt{84} \times \sin\left(\frac{\pi}{3} - 0.7137\right) = \dots$	M1	1.1b			
Or $= \sqrt{84} \times \sin(60 - 40.89) =$					
So min distance is 3	A1	1.1b			
Alternative 3					
Vector equation of the half line $r = \begin{pmatrix} 0 \\ -10 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$					
$XW = \begin{pmatrix} 4\sqrt{3} - \lambda \\ -4 - \lambda\sqrt{3} - (-10) \end{pmatrix}$					
Then either					
$\begin{pmatrix} 4\sqrt{3} - \lambda \\ 6 - \lambda\sqrt{3} \end{pmatrix} \bullet \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = 4\sqrt{3} - \lambda + 6\sqrt{3} - 3\lambda = 0 \Longrightarrow \lambda = \dots \left\{ \frac{5}{2}\sqrt{3} \right\}$	M1	3.1a			
$r = \begin{pmatrix} 0 \\ -10 \end{pmatrix} + \frac{5}{2}\sqrt{3} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = \dots$					
Or $XW^2 = (4\sqrt{3} - \lambda)^2 + (6 - \lambda\sqrt{3})^2 = 48 - 8\lambda\sqrt{3} + \lambda^2 + 36 - 12\lambda\sqrt{3} + 3\lambda^2$					
$xw^2 = 84 - 20\lambda\sqrt{3} + 4\lambda^2$ leading to					
$\frac{d(XW^2)}{d\lambda} = -20\sqrt{3} + 8\lambda = 0 \Longrightarrow \lambda = \dots$					
Finds the length $WX \sqrt{\left(4\sqrt{3} - \frac{5\sqrt{3}}{2}\right)^2 + \left(-4 - \frac{5}{2}\right)^2}$	M1	1.1b			
Or $XW = \sqrt{\left(4\sqrt{3} - \frac{5}{2}\sqrt{3}\right)^2 + \left(6 - \frac{5}{2}\sqrt{3}\sqrt{3}\right)^2}$	1011				
So min distance is 3	A1	1.1b			
	(3)				
	(10 marks)				
Notes:					
(a) B1: Correct modulus					
M1: Attempts the argument. Allow for $\arctan\left(\frac{\pm 4}{\pm 4\sqrt{3}}\right)$ or equivalents using the modulus (may be in					
wrong quadrant for this mark).					
A1: Correct argument $-\frac{\pi}{6}$ (must be in fourth quadrant but accept $\frac{11\pi}{6}$ or other difference of 2π for this					
0 0					

mark).

A1: Correct expression found for w, in the correct form, must have positive r=8 and $\theta = -\frac{\pi}{6}$.

Note: using degrees B1 M1 A0 A0

(b)(i)&(ii)

- **B1:** *w* plotted in correct quadrant with either the correct coordinate clearly seen or above the line y = -x
- M1: Half line drawn starting on the imaginary axis away from *O* with positive gradient (need not be labelled)
- A1: Sketch on **one diagram** both previous marks must have been scored and the half line should pass between O and w starting from a point on the imaginary axis below w. (You may assume it starts at -10i unless otherwise stated by the candidate)

Note: If candidates draw the loci on separate diagrams the maximum they can score is B1 M1 A0

(c)

M1: Formulates a correct strategy to find the shortest distance, e.g. uses right angle *OXA* where *X* is where the lines meet and proceeds at least as far as *OX*.

M1: Full method to achieve the shortest distance, e.g. for WX = OW - OX.

A1: cao shortest distance is 3

Alternative 1:

M1: Uses a correct method to find the equation of the line from O to w, $y = -\frac{1}{\sqrt{3}}x$ and the equation

of the half line $y = \sqrt{3}x - 10$, solves to find the point of intersection $X\left(\frac{5\sqrt{3}}{2}, -\frac{5}{2}\right)$

If the incorrect gradient(s) is used with no valid method seen this is M0

M1: Finds the length $WX = \sqrt{\left(\text{their } \frac{5\sqrt{3}}{2} - 4\sqrt{3}\right)^2 + \left(\text{their } -\frac{5}{2} - -4\right)^2} = \dots$ condone a sign slip in the

brackets.

A1: cao shortest distance is 3

Alternative 2:

M1: Uses a correct method to find the length AW and a correct method to find the angle between the horizontal and the line AW

M1: Finds the length of
$$WX = \text{their } \sqrt{84} \times \sin\left(\frac{\pi}{3} - \text{their } 0.7137\right) = \dots$$

A1: cao shortest distance is 3

Alternative 3

M1: Finds the vector equation of the half line, then *XW*.

Then either: Sets dot product *XW* and the line = 0 and solves for λ . Substitutes their λ into the equation of the half line to find the point of intersection.

Or finds the length of *XW* and differentiates, set = 0 and solve for λ

M1: Finds the length
$$WX = \sqrt{\left(\text{their}\frac{5\sqrt{3}}{2} - 4\sqrt{3}\right)^2 + \left(\text{their}-\frac{5}{2} - -4\right)^2} = \dots$$
 condone a sign slip in the

brackets.

Or substitutes their value for λ into the length of(*d*)

A1: cao shortest distance is 3