Question	Scheme	Marks	AOs	
3 (a)	Coordinates of Q are (8,-3,2)	B1	2.2a	
		(1)		
(b)	Coordinates of <i>R</i> are $\begin{pmatrix} \cos 120^{\circ} & 0 & \sin 120^{\circ} \\ 0 & 1 & 0 \\ -\sin 120^{\circ} & 0 & \cos 120^{\circ} \end{pmatrix} \begin{pmatrix} 8 \\ 3 \\ 2 \end{pmatrix} = \dots$ or $\begin{pmatrix} -0.5 & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & -0.5 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \\ 2 \end{pmatrix} = \dots$	M1	1.1a	
	So <i>R</i> is $(-4 + \sqrt{3}, 3, -4\sqrt{3} - 1)$	A1	1.1b	
		(2)		
(c)	Finds the distance $PR = \sqrt{\left(8 - \left(-4 + \sqrt{3}\right)^{2}\right)^{2} + \left(3 - 3^{2}\right)^{2} + \left(2 - \left(-4\sqrt{3} - 1\right)^{2}\right)^{2}}$ Alternatively finds their \overrightarrow{PR} or their \overrightarrow{RP} then applies length of a vector formula. $\sqrt{\left(12 - \sqrt{3}\right)^{2} + \left(3 + 4\sqrt{3}\right)^{2}} \text{ or } \sqrt{\left(-12 + \sqrt{3}\right)^{2} + \left(-3 - 4\sqrt{3}\right)^{2}}$	M1	2.1	
	$=\sqrt{204}$ $(=2\sqrt{51})$ cso	A1	1.1b	
(d)		(2)		
	$\overrightarrow{PR}.\overrightarrow{PQ} = \left(-12 + \sqrt{3}, 0, -3 - 4\sqrt{3}\right).(0, -6, 0) = 0 \text{ hence perpendicular}$	B1ft	1.1b	
		(1)		
(e)	<i>PQ</i> is perpendicular to <i>PR</i> so Area = $\frac{1}{2} \times PQ \times PR$	M1	1.1b	
	$=\frac{1}{2}\times6\times\sqrt{204}=6\sqrt{51}$ cso	A1	1.1b	
		(2)		
	(8 marks)			
Notes:				

(a)

B1: Coordinates of Q correctly stated, accept as a column vector.

(b)

- M1: Correct attempt to find coordinates of *R* using the given matrix with $\theta = 120$. Must be multiplying in the correct way round. With no working two correct values or (-2.27, 3, -7.93) implies this mark.
- A1: Correct exact coordinates as shown in scheme. Accept as a column vector. Cos 120 and sin 120 must have been evaluated.

(c)

M1: Applies the distance formula with the coordinates of *P* and their *R*. Alternatively finds the vector \overrightarrow{PR} or \overrightarrow{RP} then applies length of a vector formula.

A1: Correct answer following correct coordinates of *R*, must be a surd but need not be fully simplified.

(d)

B1ft: Shows the dot product is zero between the vectors \overrightarrow{PR} and \overrightarrow{PQ} and draws the conclusion perpendicular. Accept with \pm vectors for each. Follow through as long as the vectors are of the

correct form, so
$$\overrightarrow{PR} = \begin{pmatrix} a \\ 0 \\ b \end{pmatrix}$$
 and $\overrightarrow{PQ} = \begin{pmatrix} 0 \\ c \\ 0 \end{pmatrix}$

Note They could state if vectors \overrightarrow{PR} and \overrightarrow{PQ} are perpendicular then $\overrightarrow{PR}.\overrightarrow{PQ} = 0$ then shows $\overrightarrow{PR}.\overrightarrow{PQ} = 0$ this is B1

(e)

- M1: Correct method for the area of the triangle, follow through on their coordinates of R and Q. May see longer methods if they do not realise the triangle is right angled.
- A1: For $6\sqrt{51}$ cso following correct coordinates of *R*

Alternative 1

M1 Complete method to find the correct area

Finding all the lengths
$$|PQ| = 6$$
, $|PR| = \sqrt{240} = 4\sqrt{15}$, $|QR| = \sqrt{204} = 2\sqrt{51}$
Use cosine rule to find an angle e.g. $\cos PRQ = \frac{240 + 204 - 36}{2 \times \sqrt{240} \times \sqrt{204}} = \frac{\sqrt{85}}{10}$
leading to $PRQ = 22.7...$ or $\sin PRQ = \sqrt{1 - \left(\frac{\sqrt{85}}{10}\right)^2} = ... \left\{\frac{\sqrt{15}}{10}\right\}$
Uses the area of the triangle $= \frac{1}{2} \times \sqrt{240} \times \sqrt{204} \times \frac{\sqrt{15}}{10}$ or $= \frac{1}{2} \times \sqrt{240} \times \sqrt{204} \times \sin 22.8$
A1: For $6\sqrt{51}$

Alternative 2

M1: Uses $\frac{1}{2}|\mathbf{a} \times \mathbf{b}|$ to find the required area

e.g.
$$QP = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} RP = \begin{pmatrix} 12 - \sqrt{3} \\ 0 \\ 3 + 4\sqrt{3} \end{pmatrix}$$
 cross product
$$\begin{vmatrix} 0 & 6 & 0 \\ 12 - \sqrt{3} & 0 & 3 + 4\sqrt{3} \end{vmatrix} = -6(12 - \sqrt{3})\mathbf{i} + 6(3 + 4\sqrt{3})\mathbf{k}$$
Area $= \frac{1}{2}\sqrt{\left(-6(12 - \sqrt{3})^2 + \left(6(3 + 4\sqrt{3})^2\right)\right)} = \frac{1}{2}\sqrt{7344}$ A1: For $6\sqrt{51}$