| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 3(a) | Coordinates of $Q$ are (8,-3,2) | B1 | 2.2a |
|  |  | (1) |  |
| (b) | $\begin{aligned} & \text { Coordinates of } R \text { are }\left(\begin{array}{ccc} \cos 120^{\circ} & 0 & \sin 120^{\circ} \\ 0 & 1 & 0 \\ -\sin 120^{\circ} & 0 & \cos 120^{\circ} \end{array}\right)\left(\begin{array}{l} 8 \\ 3 \\ 2 \end{array}\right)=\ldots \\ & \text { or }\left(\begin{array}{ccc} -0.5 & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & -0.5 \end{array}\right)\left(\begin{array}{l} 8 \\ 3 \\ 2 \end{array}\right)=\ldots \end{aligned}$ | M1 | 1.1a |
|  | So $R$ is $(-4+\sqrt{3}, 3,-4 \sqrt{3}-1)$ | A1 | 1.1b |
|  |  | (2) |  |
| (c) | Finds the distance $P R=\sqrt{\left(8-'(-4+\sqrt{3})^{\prime}\right)^{2}+\left(3-3^{\prime}\right)^{2}+\left(2-'(-4 \sqrt{3}-1)^{\prime}\right)^{2}}$ <br> Alternatively finds their $\overrightarrow{P R}$ or their $\overrightarrow{R P}$ then applies length of a vector formula. $\sqrt{(12-\sqrt{3})^{2}+(3+4 \sqrt{3})^{2}} \text { or } \sqrt{(-12+\sqrt{3})^{2}+(-3-4 \sqrt{3})^{2}}$ | M1 | 2.1 |
|  | $=\sqrt{204} \quad(=2 \sqrt{51})$ cso | A1 | 1.1b |
|  |  | (2) |  |
| (d) | $\overrightarrow{P R} \cdot \overrightarrow{P Q}=(-12+\sqrt{3}, 0,-3-4 \sqrt{3}) \cdot(0,-6,0)=0$ hence perpendicular | B1ft | 1.1b |
|  |  | (1) |  |
| (e) | $P Q$ is perpendicular to $P R$ so Area $=\frac{1}{2} \times P Q \times P R$ | M1 | 1.1b |
|  | $=\frac{1}{2} \times 6 \times \sqrt{204}=6 \sqrt{51} \mathrm{cso}$ | A1 | 1.1b |
|  |  | (2) |  |

(8 marks)

## Notes:

(a)

B1: Coordinates of $Q$ correctly stated, accept as a column vector.
(b)

M1: Correct attempt to find coordinates of $R$ using the given matrix with $\theta=120$. Must be multiplying in the correct way round. With no working two correct values or ( $-2.27,3,-7.93$ ) implies this mark.
A1: Correct exact coordinates as shown in scheme. Accept as a column vector. Cos 120 and $\sin 120$ must have been evaluated.
(c)

M1: Applies the distance formula with the coordinates of $P$ and their $R$. Alternatively finds the vector $\overrightarrow{P R}$ or $\overrightarrow{R P}$ then applies length of a vector formula.
A1: Correct answer following correct coordinates of $R$, must be a surd but need not be fully simplified.
(d)

B1ft: Shows the dot product is zero between the vectors $\overrightarrow{P R}$ and $\overrightarrow{P Q}$ and draws the conclusion perpendicular. Accept with $\pm$ vectors for each. Follow through as long as the vectors are of the correct form, so $\overrightarrow{P R}=\left(\begin{array}{l}a \\ 0 \\ b\end{array}\right)$ and $\overrightarrow{P Q}=\left(\begin{array}{l}0 \\ c \\ 0\end{array}\right)$
Note They could state if vectors $\overrightarrow{P R}$ and $\overrightarrow{P Q}$ are perpendicular then $\overrightarrow{P R} \cdot \overrightarrow{P Q}=0$ then shows $\overrightarrow{P R} \cdot \overrightarrow{P Q}=0$ this is B 1
(e)

M1: Correct method for the area of the triangle, follow through on their coordinates of $R$ and $Q$. May see longer methods if they do not realise the triangle is right angled.
A1: For $6 \sqrt{51}$ cso following correct coordinates of $R$

## Alternative 1

M1 Complete method to find the correct area
Finding all the lengths $|P Q|=6, \quad|P R|=\sqrt{240}=4 \sqrt{15}, \quad|Q R|=\sqrt{204}=2 \sqrt{51}$
Use cosine rule to find an angle e.g. $\cos P R Q=\frac{240+204-36}{2 \times \sqrt{240} \times \sqrt{204}}=\frac{\sqrt{85}}{10}$
leading to $P R Q=22.7 \ldots$ or $\sin P R Q=\sqrt{1-\left(\frac{\sqrt{85}}{10}\right)^{2}}=\ldots\left\{\frac{\sqrt{15}}{10}\right\}$
Uses the area of the triangle $=\frac{1}{2} \times \sqrt{240} \times \sqrt{204} \times \frac{\sqrt{15}}{10}$ or $=\frac{1}{2} \times \sqrt{240} \times \sqrt{204} \times \sin 22.8$
A1: For $6 \sqrt{51}$

## Alternative 2

M1: Uses $\frac{1}{2}|\mathbf{a} \times \mathbf{b}|$ to find the required area
e.g. $Q P=\left(\begin{array}{l}0 \\ 6 \\ 0\end{array}\right) R P=\left(\begin{array}{c}12-\sqrt{3} \\ 0 \\ 3+4 \sqrt{3}\end{array}\right)$ cross product

$$
\left|\begin{array}{ccc}
0 & 6 & 0 \\
12-\sqrt{3} & 0 & 3+4 \sqrt{3}
\end{array}\right|=-6(12-\sqrt{3}) \mathbf{i}+6(3+4 \sqrt{3}) \mathbf{k}
$$

Area $=\frac{1}{2} \sqrt{\left(-6(12-\sqrt{3})^{2}+\left(6(3+4 \sqrt{3})^{2}\right)\right)}=\frac{1}{2} \sqrt{7344}$
A1: For $6 \sqrt{51}$

