4(i)	$\sum \alpha_{i}=-\frac{5}{3} \text { and } \sum \alpha_{i} \alpha_{j}=0$ This mark can be awarded if seen in part (ii) or part (iii)	B1	3.1a
	So $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\alpha+\beta+\gamma+\delta)^{2}-2\left(\sum \alpha_{i} \alpha_{j}\right)=\ldots$	M1	1.1b
	$=\frac{25}{9}-2 \times 0=\frac{25}{9}$	A1	1.1b
		(3)	
(ii)	$\sum \alpha_{i} \alpha_{j} \alpha_{k}=\frac{7}{3}$ and $\prod \alpha_{i}=2$ or for $x=\frac{2}{w}$ used in equation This mark can be awarded if seen in part (i) or part (iii)	B1	2.2a
	So $2\left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}\right)=2 \times \frac{\sum \alpha_{i} \alpha_{j} \alpha_{k}}{\alpha \beta \gamma \delta}=2 \times \frac{\text { ' }_{3}^{\prime} '}{'^{\frac{6}{3}} \text { ' }}$ or for $3\left(\frac{16}{w^{4}}\right)+5\left(\frac{8}{w^{3}}\right)-7\left(\frac{2}{w}\right)+6=0 \Rightarrow 6 w^{4}-14 w^{3}+\ldots=0 \text { leading to } \frac{14}{6}$	M1	1.1b
	$\left(=2 \times \frac{7 / 3}{2}\right)\left(=\frac{14}{6}\right)=\frac{7}{3}$	A1	1.1b
		(3)	
(iii)	$(3-\alpha)(3-\beta)(3-\gamma)(3-\delta)=\ldots$ expands all four brackets Or equation with these roots is $3(3-x)^{4}+5(3-x)^{3}-7(3-x)+6=0$	M1	3.1a
	$\begin{aligned} & =81-27\left(\sum \alpha_{i}\right)+9\left(\sum \alpha_{i} \alpha_{j}\right)-3\left(\sum \alpha_{i} \alpha_{j} \alpha_{k}\right)+\prod \alpha_{i} \\ & =81-27\left(-\frac{5}{3}\right)+9(0)-3\left(\frac{7}{3}\right)+2 \end{aligned}$ Or expands to fourth power and constant terms and attempts product of roots $3 x^{4}+\ldots+3 \times 3^{4}+5 \times 3^{3}-7 \times 3+6 \rightarrow \prod \alpha_{i}=\frac{" 363 "}{3}$	dM1	1.1b
	$=121$	A1	1.1b
		(3)	

Notes:

(i)

B1: Correct sum and pair sum of roots seen or implied. Must realise the pair sum is zero.
Note: These values can be seen anywhere in the candidate's solution
M1: Uses correct expression for the sum of squares.
A1: $\frac{25}{9}$. Allow this mark from incorrect sign on sum of squares (but they will score B0 if the sign is incorrect).

B1: Correct triple sum and product of roots seen or implied. May be stated in (i). Alternatively, this may be scored for sight of $x=\frac{2}{w}$ used as a transformation in the equation.
Note: These values can be seen anywhere in the candidate's solution
M1: Substitutes their values into $2 \times \frac{\sum \alpha_{i} \alpha_{j} \alpha_{k}}{\alpha \beta \gamma \delta}=\ldots$ In the alternative it is for rearranging the equation to a quartic in w and uses to find the sum of the roots.
A1: $\frac{7}{3}$ Allow this mark from incorrect sign of both triple sum and product (but they will score B0 if the sign is incorrect).
(iii)

M1: A correct method to find the value used - may recognise structure as scheme, may expand the expression in stages, or may attempt to use a linear transformation (3-x) or e.g. (3 $-w$) in original equation. Condone slips as long as the intention is clear.
dM1: Dependent on previous method mark. Uses at least 2 values of their sum of roots etc. in their expression. If using a linear shift this is for expanding to find the coefficient of x^{4} and constant term and attempts product of roots by dividing the constant term by the coefficient of x^{4}.
A1: 121.

